0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Analytical Investigation of the Flexural Capacity of Precast Concrete Frames with Hybrid Joints

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-12
DOI: 10.1155/2019/7470128
Abstract:

This study aims to evaluate flexural strength based on the inelastic neutral axis calculated from all stress states of the proposed precast composite columns with hybrid beam-column joints, which facilitate the erection of concrete precast frames in a similar manner to that used for steel frames. It was also shown analytically that hybrid joints with headed studs contribute significantly to the flexural moment capacity and effectively increase the flexural structural performance of precast composite columns. The strain compatibility-based analytical results were compared with test data, showing results with an error of less than 8% at the critical section for the maximum load limit state of specimens. It is observed that the strength contributed by steel sections and headed studs increased by 30% and 35% at the yield limit state and maximum load limit, respectively, reducing the dependence on rebars. The total contribution of the headed studs was as large as 12.2% (average of the two layers of headed studs) at the maximum load limit state, whereas the strength provided by the tensile rebars decreased from 90.5% to 63.9% for the specimen with headed studs at the maximum load limit state.

Copyright: © 2019 Ji-Hun Kim et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10302351
  • Published on:
    28/02/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine