0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Analysis of Unsteady Heat Transfer during Ice-Making Process for Ice Rink Buildings

Author(s):



ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 291
DOI: 10.3390/buildings13020291
Abstract:

The ice-making process is an important factor that affects the ice quality and the energy consumption of ice rinks. An unsteady heat transfer model is established and validated for the ice-making process. The transient temperature variation and ice thickness growing characteristics during the ice-making process are analyzed. The freezing time of a water layer and the final temperature of the stabilized ice layer are quantified. The effects of ice rink structural parameters on the ice-making process are studied. The results show that the water temperature variations during the process go through three stages. The ice-growing process mainly occurs in the second stage. The ice-making process takes about 305 min–420 min for a water layer of 5 mm thickness. The reduction in the ice-making time and the decrease in the final temperature of the stabilized ice layer can be attained by reducing the water layer thickness, the surface heat flux, the cooling pipe spacing, the fluid temperature in the cooling pipe, or the top concrete thickness. Among them, the influences of the thickness of the water layer, the surface heat flux, and the fluid temperature in the cooling pipe are more significant. As the thickness of the water layer decreases from 7 mm to 3 mm, the total ice-making time decreases by about 37.6%. The ice-making time is reduced by 17.1% with the surface heat flux decreasing from 330 W/m² to 250 W/m². The ice-making time is reduced by 21.4% with the cooling pipe temperature decreasing from −15.5 °C to −19.5 °C.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712392
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine