0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Analysis of the Ultimate Load-Bearing Capacity of Steel-Clad Concrete-Filled Steel Tube Arched Protective Doors under Blast Shock Waves

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 13
Page(s): 1424
DOI: 10.3390/buildings13061424
Abstract:

The mechanism of blast damage to steel-clad concrete-filled steel tube (SCCFST) arched protective doors is studied using the dynamic response characteristics of such loads under the action of blast shock wave loads, and the ultimate blast load-bearing capacity formula is derived based on the “plastic hinge” damage mode of the doors using limit analysis, which explores the effect of the blast shock wave. The effect of the design parameters of each component of the protective door on the load-bearing capacity subjected to blast shock waves is discussed. Results show that the damage mechanism under a uniform radial load on the outer surface of the SCCFST arched protective door is characterized by the plastic hinge lines at the two arch feet, which results in a slip fracture and renders the protective door unstable. The load-bearing capacity of the SCCFST arched protective door depends on the coordinated functioning of the cross-sectional outer cladding steel plate and inner connecting partition, concrete-filled steel tube, and restraining concrete outside the steel tube. The load-bearing capacity of each of the three parts differs with the varying cross-sectional occupancies.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10731800
  • Published on:
    21/06/2023
  • Last updated on:
    07/08/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine