Analysis of the Mechanical Behavior and Joint Shear Capacity Optimization of Glued Keys in Segmental U-Shaped Bridges
Author(s): |
Qiwu Yang
Zhiming Zhang Shengguang Liang Ziqi Tang Zhenhao Gong Shanzhi Liu Yanqun Han |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 19 June 2024, n. 6, v. 14 |
Page(s): | 1517 |
DOI: | 10.3390/buildings14061517 |
Abstract: |
This paper presents an in-depth analysis of the mechanical behavior and joint shear capacity optimization of segmental U-shaped bridges, with a focus on the application of precast segmental techniques in the construction of U-beam bridges widely used in urban rail transit networks. This study further explores the roles of key position distribution and size in the overall stability and service behavior of such structures. Considering the critical case study of the Colombia Bogotá Metro Line 1 project, finite element modeling was carried out using ABAQUS 6.14 to simulate concrete material behaviors and to evaluate the stress–strain relationship in accordance with the concrete plastic damage model and existing standards. This research identifies the significant contribution of keys in minimizing deformation and enhancing shear capacity, demonstrating the pivotal influence of shear key design on the mechanical behavior of segmental bridges. By calculating the shear capacity under different cases, this study provides recommendations on key distributions and dimensions that optimize joint shear capacities, indicating that augmenting key size within the web plate section decisively reinforces the bridge’s mechanical resilience. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.93 MB
- About this
data sheet - Reference-ID
10787795 - Published on:
20/06/2024 - Last updated on:
20/06/2024