Analysis of Seismic Responses and Vibration Serviceability in a High-Rise Timber–Concrete Hybrid Building
Author(s): |
Chao Zong
Jiajun Zhai Xiaoluan Sun Xingxing Liu Xiaowu Cheng Shenshan Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 August 2024, n. 9, v. 14 |
Page(s): | 2614 |
DOI: | 10.3390/buildings14092614 |
Abstract: |
Timber–concrete hybrid structures are commonly employed in multi-story timber buildings; however, further research is necessary to fully understand the seismic performance of these structures as well as the dynamic properties of the floor. The two dynamic concerns, seismic effects and the vibration of floors in hybrid structures, are key issues, in view of which this study aimed to investigate the small-seismic-response spectra and elastic time histories in a high-rise timber hybrid building, specifically the medical technology building of Jiangsu Provincial Rehabilitation Hospital in China. The dynamic characteristics of a localized cross-laminated timber (CLT) floor were tested in situ, and the impacts of human-induced vibration were quantified. Comprehensive theoretical analysis results reveal that the basic vibration pattern of the structure was mainly translational in nature and that the period ratio, inter-story displacement angle, and shear-to-weight ratio all met the demands of the Chinese timber building design code. The experimental test results show that the vertical natural frequency of the CLT floor was about 15.96 Hz and thus met appropriate requirements with respect to natural frequency. However, peak floor acceleration was found to be high under the conditions of a single person walking quickly, a single person trotting, and multiple persons walking randomly. In light of these findings, the floor should be paved with a fine-grained concrete building surface, according to design requirements, so that its serviceability might be improved. Overall, the relevant analytical methods presented in this paper provide guidance and practical reference for the seismic analysis of timber hybrid structures, as well as vibration serviceability analysis for CLT floors. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
14.42 MB
- About this
data sheet - Reference-ID
10795198 - Published on:
01/09/2024 - Last updated on:
01/09/2024