0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Analysis of Gravel Migration Patterns During Vibration Rolling and Their Impact on GCL Performance Based on DEM

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 14
Page(s): 3640
DOI: 10.3390/buildings14113640
Abstract:

In this study, a multilayer composite rolling model consisting of a rolling wheel, a protective layer, a GCL, and a support layer was constructed by the discrete element method (DEM). Soil compaction and gravel migration, and their effects on the GCL, were analyzed from a fine viewpoint, and three key indexes for the safety assessment of the GCL were proposed: local elongation, gravel embedment value, and bentonite allotment number. The results show that the soil porosity and cumulative settlement do not decrease all the time with the number of rolling passes, and there exists an optimal number of rolling passes during the rolling process; the protective layer of gravel soil moves more frequently than the support layer; and the nearly rectangular and nearly elliptical gravels are more likely to rotate. The maximum local elongation of the GCL was 3.79% during the lapping process, and all gravels in contact with the upper boundary of the GCL extruded the GCL to varying degrees during the lapping process. The distribution of bentonite particles is closely related to the contact mode between gravel and GCL.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810109
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine