Analysis of Damage Mechanism of Ellipsoidal Assembled Tower Joint
Author(s): |
Miao Li
Jiaxin Ma Yang Wen |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 February 2025, n. 4, v. 15 |
Page(s): | 572 |
DOI: | 10.3390/buildings15040572 |
Abstract: |
An assembled elliptical joint was designed for a lattice wind turbine tower, and four samples were analyzed under static loads. Additionally, finite element analysis software was employed to create 40 models, with the wall thickness of the ball seat and the web being the variable parameters. This enabled the identification of the variation pattern in the ultimate bearing capacity. It was found that the failure parts of the four test pieces were located in the connection area between the tensioned web member and the ball table. Increasing the wall thickness of the ball table and the web member significantly increased the joint’s load-bearing capacity. However, increasing the table wall thickness somewhat reduced the joint’s deformation capacity. Increasing the web member thickness significantly improved the deformation capacity and the energy absorption capacity of the joint. Increasing the table wall and the member web thickness reduced the peak equivalent stress in the ball table area and the press plate, as well as the overall stress level. Finite element simulations showed that the joint’s load-bearing ability was adversely impacted when the table wall thickness exceeded 10 mm. When the web member wall thickness exceeded 5 mm, the joint bearing capacity was less sensitive to the increase in the wall thickness. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.58 MB
- About this
data sheet - Reference-ID
10820740 - Published on:
11/03/2025 - Last updated on:
11/03/2025