Analysis of Arch Forming Factors of Shallow Buried Hard Rock Tunnel under Overlying Load
Author(s): |
Lixue Cao
Wentai Cui Zhe Qin Rui Xu Tongtong Wang Yanbing Liu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 23 August 2023, n. 9, v. 13 |
Page(s): | 2210 |
DOI: | 10.3390/buildings13092210 |
Abstract: |
To investigate the arching effect of shallow buried hard rock tunnels under overlying load, the engineering scenario of a subway station on Qingdao Metro Line 6 is utilized. A large-scale tunnel loading model test is conducted, in conjunction with finite element numerical simulations, to analyze the impact of various overburden ratios on strata arching. The results show that: when the tunnel excavation span is certain, with an increase in the overlying rock mass, the stress diffusion process of the surrounding rock can be better accomplished to form the arch effect. This means that the thickness of the overburden of the tunnel determines whether or not the surrounding rock appears to have a stratified arch effect. When the tunnel overlying rock thickness is certain, the span of the tunnel determines the shape of the formation into an arch, that is, the curvature of the arch. The joint surface is an important factor in tunnel stability. When the overlying load increases to a certain value, the rock mass at the joint plane slips relatively, leading to the displacement phenomenon of the surrounding rock, which then affects the formation and shape of the formation arch. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.8 MB
- About this
data sheet - Reference-ID
10737049 - Published on:
02/09/2023 - Last updated on:
14/09/2023