Analysis, Design, and Construction of a Base-Isolated Multiple Building Structure
Author(s): |
Stefano Sorace
Gloria Terenzi |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2014, v. 2014 |
Page(s): | 1-13 |
DOI: | 10.1155/2014/585429 |
Abstract: |
The analysis and design of a multiple residential building, seismically protected by a base isolation system incorporating double friction pendulum sliders as protective devices, are presented in the paper. The building, situated in the suburban area of Florence, is composed of four independent reinforced concrete framed structures, mutually separated by three thermal expansion joints. The plan is L-shaped, with dimensions of about 75 m in the longitudinal direction and about 30 m along the longest side of the transversal direction. These characteristics identify the structure as the largest example of a base-isolated “artificial ground” ever built in Italy. The base isolation solution guarantees lower costs, a much greater performance, and a finer architectural look, as compared to a conventional fixed-base antiseismic design. The characteristics of the building and the isolators, the mechanical properties and the experimental characterization campaign and preliminary sizing carried out on the latter, and the nonlinear time-history design and performance assessment analyses developed on the base isolated building are reported in this paper, along with details about the installation of the isolators and the plants and highlights of the construction works. |
Copyright: | © 2014 Stefano Sorace et al. |
License: | This creative work has been published under the Creative Commons Attribution 3.0 Unported (CC-BY 3.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.76 MB
- About this
data sheet - Reference-ID
10176929 - Published on:
07/12/2018 - Last updated on:
02/06/2021