Amplitude-Scaling Bias Analysis of Ground Motion Record Set in Strip Method for Structural Seismic Fragility Assessment
Author(s): |
Zhuo Song
Xiaojun Li Yushi Wang Bochang Zhou |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 21 January 2025, n. 3, v. 15 |
Page(s): | 401 |
DOI: | 10.3390/buildings15030401 |
Abstract: |
The multi-strip method is often used to establish a demand model for fragility analysis. Using the multi-strip method to scale the ground motion record may cause uncertainty and bias in structural response calculation and fragility assessment. It is necessary to analyze the effect of differences in the amplitude scaling range in different strips on structural seismic response calculation and seismic fragility assessment. In this paper, the multi-strip method was used to analyze the seismic demand bias based on four multi-story reinforced concrete frame structures subjected to eight ground motion record sets. The bias, variance, and coefficient of variation in different strips in each group of ground motion records were obtained. The effect of different strips on the demand bias was investigated by analysis of variance (ANOVA). Uncertainty quantification of structural demand and fragility curves was carried out using the bootstrap sampling method. The results for structures in different ground motion record sets verify that the differences between the demand bias for different strips by amplitude scaling are statistically insignificant for a 95% confidence level. These findings will contribute to the use of scaling methods for ground motion record sets in a probabilistic seismic demand assessment, allowing for a more reliable prediction of structural seismic fragility. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.28 MB
- About this
data sheet - Reference-ID
10815943 - Published on:
03/02/2025 - Last updated on:
03/02/2025