0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

AI-Based Controls for Thermal Comfort in Adaptable Buildings: A Review

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 14
Page(s): 3519
DOI: 10.3390/buildings14113519
Abstract:

Due to global weather changes and pandemics, people are more likely to spend most of their time in indoor environments. In this regard, indoor environment quality is a very important aspect of occupant well-being, which is often ignored in modern building designs. Based on our research, thermal comfort is one of the essential items in building environments that can improve the mental stability and productivity of the occupants if the building’s indoor environment is created in a way that meets the occupants’ comfort requirements. Buildings nowadays operate on adaptive or stationary models to attain thermal comfort, which is based on Fanger’s model of the Predicted Mean Vote (PMV). Based on the literature review, limited work has been carried out to enhance the quality of the inside environment, and most research work has been devoted to building energy management. Moreover, there have been no definite solutions so far that have the capability to detect the thermal comfort requirements of multiple occupants in real time. Modern buildings tend to operate on predefined set point parameters to control the indoor environment based on the measured room temperature, which can be different from the thermal comfort requirements of the occupants. This paper discusses the limitations and assumptions that are associated with the existing thermal comfort solutions and emphasises the importance of having a real-time solution to address the thermal requirements of occupants.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10804867
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine