0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Adsorption Property of Pb(II) by the Laterite-Bentonite Mixture Used as Waste Landfill Liner

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-11
DOI: 10.1155/2019/2879156
Abstract:

To assess the potential use of laterite-bentonite mixture as waste landfill liner, a range of batch tests were conducted to study the influence of contact time, solid to solution ratio, pH, ion strength, and temperature on Pb(II) adsorption. The experimental results showed that the uptake of Pb(II) by laterite-bentonite mixture increases with the increase of contact time and the adsorption equilibrium can be reached within 30 minutes. This process can be delineated well using a pseudo-second-order kinetics equation. Besides, with the increase of solid to solution ratio (s/w) and pH, Pb(II) will be adsorbed more by the laterite-bentonite mixture. However, the uptake of Pb(II) will decrease when ion strength rises in the solution and this is due to the competitive adsorption and cation exchange between different cations. When conducting the batch test at 298 K and 323 K, respectively, the experiment results showed significant growth when temperature increases because the adsorption process is an endothermic reaction. This influence of temperate can be described better by the Langmuir isotherm model than that by the Freundlich isotherm model. In each experiment condition, the uptake of Pb(II) increases with the increasing of bentonite content, indicating a good improvement in the effect of bentonite on laterite used as landfill liner.

Copyright: © 2019 Yong-gui Chen et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10311731
  • Published on:
    17/04/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine