0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

An Adaptive Sparse Regularization Method for Response Covariance-Based Structural Damage Detection

Author(s): ORCID


ORCID

ORCID

Medium: journal article
Language(s): English
Published in: Structural Control and Health Monitoring, , v. 2023
Page(s): 1-40
DOI: 10.1155/2023/3496666
Abstract:

Structural damage detection is usually an ill-posed inverse problem due to the contamination of measurement noise and model error in structural health monitoring. To deal with the ill-posed damage detection problem, l2-regularization is widely used. However, l2-regularization tends to provide nonsparse solutions and distribute identified damage to many undamaged elements, potentially leading to false alarms. Therefore, an adaptive sparse regularization method is proposed, which considers spatially sparse damage as a prior constraint since structural damage often occurs in some locations with stiffness reduction at the sparse elements out of the large total number of elements in an entire structure. First, a response covariance-based convex cost function is established by incorporating an l1-regularized term and an adaptive regularization factor to formulate the sparse regularization-based damage detection problem. Then, optimal sensor placement is conducted to determine the optimal measurement locations where the acceleration responses are adopted for computing the response covariance-based damage index and cost function. Further, the predictor-corrector primal-dual path-following approach, an efficient and robust convex optimization algorithm, is applied to search for solutions to the damage detection problem. Finally, a comparison study with the Tikhonov regularization-based damage detection method is conducted to examine the performance of the proposed adaptive sparse regularization-based method by using an overhanging beam model subjected to different damage scenarios and noise levels. The numerical study demonstrates that the proposed method can effectively and accurately identify damage under multiple damage scenarios with various noise levels, and it outperforms the Tikhonov regularization-based method in terms of high accuracy and few false alarms. The analyses on time consumption, adaptiveness of the sparse regularization factor, model-error resistance, and sensor number influence are conducted for further discussions of the proposed method.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1155/2023/3496666.
  • About this
    data sheet
  • Reference-ID
    10708513
  • Published on:
    21/03/2023
  • Last updated on:
    21/03/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine