Accurate Virtual Trial Assembly Method of Prefabricated Steel Components Using Terrestrial Laser Scanning
Author(s): |
Yin Zhou
Daguang Han Kaixin Hu Guocheng Qin Zhongfu Xiang Chunli Ying Lidu Zhao Xingyi Hu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-15 |
DOI: | 10.1155/2021/9916859 |
Abstract: |
The comprehensive utilization of prefabricated components (PCs) is one of the features of industrial construction. Trial assembly is imperative for PCs used in high-rise buildings and large bridges. Virtual trial assembly (VTA) is a preassembly process for PCs in a virtual environment that can avoid the time-consuming and economic challenges in physical trial assembly. In this study, a general framework for VTA that is performed between a point cloud, a building information model (BIM), and the finite element method is proposed. In obtaining point clouds via terrestrial laser scanning, the registration accuracy of point clouds is the key to building an accurate digital model of PCs. Accordingly, an accurate registration method based on triangular pyramid markers is proposed. This method can enable the general registration accuracy of point clouds to reach the submillimeter scale. Two algorithms for curved members and bolt holes are developed for PCs with bolt assembly to reconstruct a precise BIM that can be used directly in finite element analysis. Furthermore, an efficient simulation method for accurately predicting the elastic deformation and initial stress caused by forced assembly is proposed and verified. The proposed VTA method is verified on a reduced-scale steel pipe arch bridge. Experimental results show that the geometric prediction deviation of VTA is less than 1/1800 of the experimental bridge span, and the mean stress predicted via VTA is 90% of the measured mean stress. In general, this research may help improve the industrialization level of building construction. |
Copyright: | © Yin Zhou et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.7 MB
- About this
data sheet - Reference-ID
10613182 - Published on:
09/07/2021 - Last updated on:
17/02/2022