0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Accurate Dynamic Analysis Method of Cable-Damper System Based on Dynamic Stiffness Method

Author(s):


ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 4007
DOI: 10.3390/buildings14124007
Abstract:

To suppress large vibrations of the cable in cable-stayed bridges, it is common to install transverse dampers near the end of the cable. This paper focuses on the cable-damper system; based on the dynamic stiffness method, an accurate dynamic analysis method considering cable parameters, damper parameters, and cable forces is proposed. First, a mechanical analysis model is established which is closer to the cable with a transverse damper installed in the bridge. The model considers the cable bending stiffness, sag, inclination angle, cable force, damper stiffness, damping coefficient, and damper installation height. Then, the characteristic frequency equation of the cable-damper system is established, and a solution method that combines the initial value method and Newton–Raphson method is proposed. This method is confirmed to provide more accurate frequency analysis for the cable-damper system. Finally, using this method, the effect of the damper parameters on the dynamic characteristics of the system is investigated.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810474
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine