0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

3D Printable Ca(OH)2-based geopolymer concrete with steel fiber reinforcement

Author(s):
ORCID






Medium: journal article
Language(s): English
Published in: Materials and Structures, , n. 2, v. 58
DOI: 10.1617/s11527-025-02600-5
Abstract:

This study investigates the impact of varying steel fiber (SF) content (0%, 0.8%, 1.0%, and 1.2% by volume) on the mechanical and durability properties of 3D-printed Ca(OH)2-activated geopolymer concrete (GPC). The addition of 1.2% SF improved flexural strength by 69% at 7 days and 16% at 28 days, while tensile strength more than doubled to 3.75 MPa at 28 days. Although compressive strength remained unaffected at 43 MPa, SF enhanced interlayer bond strength by 20%, which is crucial for layer cohesion in 3D-printed structures. Additionally, the elastic modulus increased by 7%, contributing to improved stiffness. Durability assessments, including autogenous shrinkage and self-induced stress, indicated a slight reduction in shrinkage of SF-reinforced samples, with no significant effect on self-induced stress. Microstructural analysis using scanning electron microscopy (SEM) and X-ray micro-computed tomography (µCT) demonstrated the crack-bridging behavior of steel fibers, enhancing ductility and fracture resistance. There was a slight increase in porosity (5.34%) of SF-reinforced samples without negatively affecting their mechanical properties. Notably, SF improved early-age toughness and controlled crack propagation across printed layers, addressing a critical challenge in 3D-printed concrete. The novelty of this work lies in successfully reinforcing 3D-printed Ca(OH)2-activated GPC with recycled steel fibers, enhancing mechanical properties, interlayer bonding, and durability without compromising printability. This study offers a sustainable reinforcement strategy for 3D printing in construction.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1617/s11527-025-02600-5.
  • About this
    data sheet
  • Reference-ID
    10818725
  • Published on:
    11/03/2025
  • Last updated on:
    11/03/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine