0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

3D Fiber-Based Frame Element with Multiaxial Stress Interaction for RC Structures

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-13
DOI: 10.1155/2018/8596970
Abstract:

A three-dimensional fiber-based frame element accounting for multiaxial stress conditions in reinforced concrete structures is presented. The element formulation relies on the classical Timoshenko beam theory combined with sectional fiber discretization and a triaxial constitutive model for reinforced concrete consisting of an orthotropic, smeared crack material model based on the fixed crack assumption. Torsional effects are included through the Saint-Venant theory of torsion, which accounts for out-of-plane displacements perpendicular to the cross section due to warping effects. The formulation was implemented into a force-based beam-column element and verified against monotonic and cyclic tests of reinforced concrete columns in biaxial bending, beams in combined flexure-torsion, and flexure-torsion-shear.

Copyright: © 2018 Alexander Kagermanov et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176488
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine