0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Shear Design of Composite Panels - Post-Buckling Tension Field Action

Author(s):

Medium: conference paper
Language(s): English
Conference: Footbridge 2014 - Past, Present & Future, London, 16-18 July 2014
Published in:
Year: 2014
Abstract: The potential of glass fibre reinforced polymers (GFRP) as structural shear panels, i.e. slender elements loaded primarily in in-plane shear, is far from being exploited. Current design proposals only consider the resistance up to elastic panel buckling, leading to a relatively low economic competitiveness of such structural elements. This paper reports on a comprehensive research project on the structural behaviour of Vierendeel frames made of GFRP U-profiles, braced with riveted or bolted GFRP panels of variable thickness, particularly targeting their post-buckling (i.e. post-critical) shear resistance. The contribution discusses the results of full-scale tests and evaluates the influence of the different types of connections on ultimate loads and general bearing behaviour of the test specimens. It reports on findings from extensive non-linear FE analysis and compares them to the full-scale test results as well as to predictions based on existing proposals for the post-critical shear resistance of slender steel panels, i.e. tension field approaches. It further draws conclusions on the appropriate structural design method for determining the post-critical resistance of slender GFRP panels loaded in in-plane shear and identifies future research needs.
Keywords:
full-scale tests buckling shear resistance non-linear finite element analysis Vierendeel frame glass fibre reinforced polymers (GFRP) bracing panels post-critical tension field action structural design models connection ductility
Structurae cannot make the full text of this publication available at this time.
  • About this
    data sheet
  • Reference-ID
    10070900
  • Published on:
    09/12/2014
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine