0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Performance of Self-Centering UHPC Retainers Applied to Medium-Small Span Concrete Bridges

 Seismic Performance of Self-Centering UHPC Retainers Applied to Medium-Small Span Concrete Bridges
Author(s): , ,
Presented at IABSE Congress: The Evolving Metropolis, New York, NY, USA, 4-6 September 2019, published in , pp. 2043-2047
DOI: 10.2749/newyork.2019.2043
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.24 MB

Seismic resistant retainer is an important component for seismic design of the medium‐small span bridges. However, it’s difficult for the bridge engineers to design a reasonable transverse retainer...
Read more

Bibliographic Details

Author(s): (Xiangtan University)
(Xiangtan University)
(The City College of City University of New York)
Medium: conference paper
Language(s): English
Conference: IABSE Congress: The Evolving Metropolis, New York, NY, USA, 4-6 September 2019
Published in:
Page(s): 2043-2047 Total no. of pages: 5
Page(s): 2043-2047
Total no. of pages: 5
DOI: 10.2749/newyork.2019.2043
Abstract:

Seismic resistant retainer is an important component for seismic design of the medium‐small span bridges. However, it’s difficult for the bridge engineers to design a reasonable transverse retainer due to deficiency of design detail in most of current seismic design specifications. Therefore, this paper proposed a prestressed prefabricated concrete retainer that utilize the ultra‐high performance concrete (UHPC). Firstly, the structural characteristics and the seismic design method of the new proposed retainer is illustrated. The OpenSEES model of the case‐study bridge were simulated by considering three different types of seismic resistant retainers. A total of ten high intensity ground motions were selected to conduct the nonlinear time history analysis (NTHA). Subsequently, to investigate the seismic performance of the proposed UHPC retainer, this paper performs the comparative study of seismic responses for different bridge components. It is concluded that, the proposed retainer can provide excellent displacement capacity and help to reduce the seismic damage of bridge piers significantly. In addition, the new retainer has strong ability to keep self‐centering to help the bridge reducing the residual displacement of superstructure under strong seismic events. The proposed UHPC retainer is applicable to the rapid prestressed prefabricated construction process and has a clear load transfer mode under earthquake actions. Therefore, it is a good candidate to the multi‐level performance‐based seismic design of the medium‐small span bridges.

Keywords:
seismic analysis mechanical model design method bridge engineering UHPC retainer