0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Probabilistic Assessment of Vehicle Driving Safety under Strong Winds – Cause Investigations on Two Sea-Crossing Bridges

 Probabilistic Assessment of Vehicle Driving Safety under Strong Winds – Cause Investigations on Two Sea-Crossing Bridges
Author(s): ORCID, ,
Presented at IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, published in , pp. 28-33
DOI: 10.2749/nanjing.2022.0028
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.29 MB

The strong side winds threaten the stability of running vehicles over the sea-crossing bridges due to the high altitude of the deck and free exposure to the upcoming winds. Therefore, bridge operat...
Read more

Bibliographic Details

Author(s): ORCID (Seoul National University, Seoul, Korea Rep.)
(Seoul National University, Seoul, Korea Rep.)
(FAMU-FSU College of Engineering, Tallahassee, USA)
Medium: conference paper
Language(s): English
Conference: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Published in:
Page(s): 28-33 Total no. of pages: 6
Page(s): 28-33
Total no. of pages: 6
DOI: 10.2749/nanjing.2022.0028
Abstract:

The strong side winds threaten the stability of running vehicles over the sea-crossing bridges due to the high altitude of the deck and free exposure to the upcoming winds. Therefore, bridge operators control the speed limit or close the bridges when the wind speed reaches predetermined criteria. Since the sea-crossing bridges play an essential role in transportation networks, the traffic control strategy, including complete closure, requires a careful assessment of the critical wind speed at which vehicle instability can occur. As the aerodynamic forces on vehicles depend on several influence factors, including the geometrical shape of the superstructure, the critical wind speeds variate bridge by bridge. This study demonstrates a framework to determine the critical wind speed. This study reports two overturning accidents experienced in a double-deck suspension bridge and a cable-stayed bridge. By applying the proposed framework to the cases, the authors successfully explained the cause of accidents. For this investigation, the authors used a wind tunnel measurement of aerodynamic loads on vehicles and the vehicle dynamics to determine critical wind speed curves. The authors also extended the procedure to the probabilistic risk assessment by adding the long-term wind data analysis of the bridge site. In this way, this study provides a guideline for bridge operators on balancing the driving safety and the continuous mobility of the sea-crossing bridges under hazardous high wind conditions.

Keywords:
sea-crossing bridge Traffic Control probabilistic assessment strong wind driving safety short-term wind prediction
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

This creative work is copyrighted material and may not be used without explicit approval by the author and/or copyright owner.