0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical and experimental evaluation of concrete cracking in timber concrete composite bridge beams

 Numerical and experimental evaluation of concrete cracking in timber concrete composite bridge beams
Author(s): , , ,
Presented at IABSE Symposium: Engineering for Progress, Nature and People, Madrid, Spain, 3-5 September 2014, published in , pp. 153-160
DOI: 10.2749/222137814814027729
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.15 MB

TCC bridges are a more durable alternative to the very high number of conventional timber bridges en Chile´s road network. In a research project, numerical analyses and laboratory tests were condu...
Read more

Bibliographic Details

Author(s):



Medium: conference paper
Language(s): English
Conference: IABSE Symposium: Engineering for Progress, Nature and People, Madrid, Spain, 3-5 September 2014
Published in:
Page(s): 153-160 Total no. of pages: 8
Page(s): 153-160
Total no. of pages: 8
Year: 2014
DOI: 10.2749/222137814814027729
Abstract:

TCC bridges are a more durable alternative to the very high number of conventional timber bridges en Chile´s road network. In a research project, numerical analyses and laboratory tests were conducted in order to obtain the influence of concrete cracking in TCC beams. The results from the FEM simulations and from the shear tests indicate that the influence of the concrete cracking is not limited to a stiffness reduction of the concrete slab, but it the stiffness of the shear connectors is reduced, too. No other parameter was found to significantly improve the correlation between simulations and real tests. Laboratory tests validate that small concrete cracks can cause significant connector stiffness reductions. Good correlations on the safe side between numeric simulation and test results is obtained, if the connectors’ slip modulus is reduced by 60%, in addition to the theoretic concrete cracking.

Keywords:
concrete bridges testing serviceability timber composites computational methods