0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Large-Scale Flexural Testing of Concrete Beams Reinforced with Conventional Steel and Titanium Alloy Bars

 Large-Scale Flexural Testing of Concrete Beams Reinforced with Conventional Steel and Titanium Alloy Bars
Author(s): , ,
Presented at IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022, published in , pp. 272-276
DOI: 10.2749/prague.2022.0272
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.14 MB

The research focuses on the use of Titanium Alloy Bars (TiABs) in concrete cap beams. TiABs offer good ductility, high strength, lightweight, superior corrosion resistance, lower overstrength, and ...
Read more

Bibliographic Details

Author(s): (Department of Civil and Environmental Engineering, Idaho State University, Pocatello, ID, USA)
(Department of Civil and Environmental Engineering, Idaho State University, Pocatello, ID, USA)
(Department of Civil and Environmental Engineering, Idaho State University, Pocatello, ID, USA)
Medium: conference paper
Language(s): English
Conference: IABSE Symposium: Challenges for Existing and Oncoming Structures, Prague, Czech Republic, 25-27 May 2022
Published in:
Page(s): 272-276 Total no. of pages: 5
Page(s): 272-276
Total no. of pages: 5
DOI: 10.2749/prague.2022.0272
Abstract:

The research focuses on the use of Titanium Alloy Bars (TiABs) in concrete cap beams. TiABs offer good ductility, high strength, lightweight, superior corrosion resistance, lower overstrength, and better fatigue performance. TiABs have recently been used in several existing bridges in Oregon and Texas in the United States to increase shear and flexural capacities of concrete beams. While TiABs have been implemented in retrofitting of existing bridges in the United States, their application in new structures have not been tested and compared against conventional steel rebars. Idaho State University (ISU) has been investigating application of TiABs in new concrete structures through large-scale testing. Past research at ISU has shown that the use of titanium alloy (Ti-6Al-4V) in new bridges can reduce rebar congestion and residual drift after an earthquake by 50% while providing adequate ductility and strength compared to cast-in-place construction. The research in this paper proposes concept for an innovative cap beam reinforced with longitudinal TiABs. The cap beam integrates both structural performance and durability. Flexural and shear design procedures for the cap beam in accordance with the AASHTO LRFD Design are discussed. To investigate structural performance, a large-scale cap beam reinforced with longitudinal grade 5 titanium alloy (Ti-6Al-4V) is tested under three-point bending test protocol. The results are compared against a benchmark cast-in-place beam with normal rebars under the same testing arrangement and loading protocol.

Keywords:
bridges durability large-scale testing Innovative Materials flexural behavior Titanium alloy bars Ti6Al4V cap beam
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

This creative work is copyrighted material and may not be used without explicit approval by the author and/or copyright owner.