0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Influence of the local bond stress distribution of FRP rebars on the anchorage in concrete

 Influence of the local bond stress distribution of FRP rebars on the anchorage in concrete
Author(s): ,
Presented at IABSE Symposium: Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27-29 March 2019, published in , pp. 884-890
DOI: 10.2749/guimaraes.2019.0884
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.69 MB

Poor durability of building structures leads to high repair costs. The durability of reinforced concrete structures is largely dependent on the corrosion resistance of the reinforcing steel. For ap...
Read more

Bibliographic Details

Author(s): (Technische Universität Kaiserslautern, Kaiserslautern, Germany)
(Technische Universität Kaiserslautern, Kaiserslautern, Germany)
Medium: conference paper
Language(s): English
Conference: IABSE Symposium: Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27-29 March 2019
Published in:
Page(s): 884-890 Total no. of pages: 7
Page(s): 884-890
Total no. of pages: 7
DOI: 10.2749/guimaraes.2019.0884
Abstract:

Poor durability of building structures leads to high repair costs. The durability of reinforced concrete structures is largely dependent on the corrosion resistance of the reinforcing steel. For applications which are highly endangered by corrosion, fibre-reinforced plastic (FRP) offer a solution. A basic prerequisite for the long-term functionality of a composite material is the bonding of the individual components. The lower modulus of elasticity and the different surface geometry of glass fibre- reinforced plastic (GFRP) reinforcement compared to steel reinforcement lead to a change in the bond stress distribution. This results in different bond splitting effects and load introduction lengths. In this paper, the bond stress distribution over the bond length of steel bars and FRP bars is compared. For this purpose, pull-out tests with short and long bond lengths are investigated. The force transmission from FRP to the concrete is measured by means of a fibre-optic measurement of pull-out tests with long bond lengths and compared with results from the literature.

Keywords:
anchorage bond strength bond behaviour FRP reinforcement