0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Glass Failure Prediction Model for Out-of-Plane Bending of Waterjet- Drilled Holes

 Glass Failure Prediction Model for Out-of-Plane Bending of Waterjet- Drilled Holes
Author(s): , ,
Presented at IABSE Symposium: Engineering the Future, Vancouver, Canada, 21-23 September 2017, published in , pp. 2362-2369
DOI: 10.2749/vancouver.2017.2362
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.5 MB

Use of fully tempered (FT), point-supported glass (PSG) as structural elements has become increasingly common. However, current US glass design charts and analytical methods found in ASTM E1300 are...
Read more

Bibliographic Details

Author(s): (Gonzaga University, Spokane WA, USA)
(Stutzki Engineering, Milwaukee WI, USA)
(Texas Tech University, Lubbock TX, USA)
Medium: conference paper
Language(s): English
Conference: IABSE Symposium: Engineering the Future, Vancouver, Canada, 21-23 September 2017
Published in:
Page(s): 2362-2369 Total no. of pages: 8
Page(s): 2362-2369
Total no. of pages: 8
Year: 2017
DOI: 10.2749/vancouver.2017.2362
Abstract:

Use of fully tempered (FT), point-supported glass (PSG) as structural elements has become increasingly common. However, current US glass design charts and analytical methods found in ASTM E1300 are only applicable to rectangular lites with continuous line supports along one or more edges. As a result, practitioners use finite element analysis to determine maximum principle stress that dictates glass thickness. However, sole reliance on the single largest maximum principle tensile stress (SLMPTS) may not always be representative of actual performance as surface flaws often precipitate failure at lower stresses and different locations from the SLMPTS. This paper analyzes the experimental data for 10 FT specimens with waterjet holes subject to out-of-plane bending. Experimental time histories are converted to the to 3-second failure loads for determination of best fit m- and k- values for use with the glass failure prediction model to determine stresses for a probability of breakage of 1 in 1,000 and 8 in 1,000 lites.

Keywords:
failure prediction model point supported glass fully tempered allowable stress