0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Electric Curing of Conductive Concrete for Cold Weather

 Electric Curing of Conductive Concrete for Cold Weather
Author(s): , , , ,
Presented at IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024, published in , pp. 789-797
DOI: 10.2749/manchester.2024.0789
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.19 MB

This paper presents electric curing of concrete as an effective thermal application method, facilitating the continuous construction of concrete structures during cold weather. Concrete specimens w...
Read more

Bibliographic Details

Author(s): (Rowan University, New Jersey, USA)
(Rowan University, New Jersey, USA)
(Rowan University, New Jersey, USA)
(Rowan University, New Jersey, USA)
(U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, New Hampshire, USA)
(U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, New Hampshire, USA)
Medium: conference paper
Language(s): English
Conference: IABSE Symposium: Construction’s Role for a World in Emergency, Manchester, United Kingdom, 10-14 April 2024
Published in:
Page(s): 789-797 Total no. of pages: 9
Page(s): 789-797
Total no. of pages: 9
DOI: 10.2749/manchester.2024.0789
Abstract:

This paper presents electric curing of concrete as an effective thermal application method, facilitating the continuous construction of concrete structures during cold weather. Concrete specimens were cast and cured at -15°C for 48 hours, followed by air curing at 20°C. Voltage was applied to the specimens at an early stage to maintain their temperature above the freezing point for the initial 48 hours after mixing while stored at -15°C. The compressive strength of specimens was measured at a 7-day age. Results show that electric curing can linearly increase the temperature of conductive concrete. Additionally, it is demonstrated that a temperature controller can be used to maintain the concrete temperature at a desired level (target temperature) throughout the curing period. The study concludes that electric curing effectively prevents frost damage in conductive concrete, even at temperatures as low as -15°C.

Keywords:
frost damage conductive concrete electric curing cold weather concrete