Deployment of a Pentagonal "Hollow-Rope" Tensegrity Module
Author(s): |
Landolf Rhode-Barbarigos
Nizar Bel Hadj Ali René Motro Ian F. C. Smith |
---|---|
Medium: | conference paper |
Language(s): | English |
Conference: | 35th Annual Symposium of IABSE / 52nd Annual Symposium of IASS / 6th International Conference on Space Structures: Taller, Longer, Lighter - Meeting growing demand with limited resources, London, United Kingdom, September 2011 |
Published in: | IABSE-IASS 2011 London Symposium Report |
Year: | 2011 |
Abstract: |
Tensegrity structures are spatial reticulated structures composed of cables and struts. Tensegrity systems are good candidates for adaptive and deployable structures and thus have applications in various engineering fields. A “hollow-rope” tensegrity system composed of tensegrity-ring modules has been demonstrated by the authors to be a viable system for a pedestrian bridge. This paper focuses on the deployment of pentagonal ring modules. A geometric study is performed to identify the deployment-path space allowing deployment without strut contact. Two actuation schemes are explored for deployment: the first scheme employs only actuated cables, while the second combines actuated cables with spring elements. In both schemes, continuous cables are used to reduce the number of actuators required. Finally, the structural response of the module during deployment is studied numerically using a modified dynamic relaxation algorithm. |
Keywords: |
pedestrian bridges deployable structures dynamic relaxation adaptive structures tensegrity structures
|