0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Sanjog Chhetri Sapkota ORCID

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Hoque, Md Ahatasamul / Shrestha, Ajad / Sapkota, Sanjog Chhetri / Ahmed, Asif / Paudel, Satish: Prediction of autogenous shrinkage in ultra-high-performance concrete (UHPC) using hybridized machine learning. In: Asian Journal of Civil Engineering.

    https://doi.org/10.1007/s42107-024-01212-8

  2. Subedi, Ajaya / Thapa, Bhum Bahadur / Poudel, Ashish / Adhikari, Binaya / Khadka, Binod / Poudel, Samrat / Sapkota, Sanjog Chhetri: Exploring the potential of Himalayan Giant Nettle fiber and supplementary cementitious materials for sustainable concrete development. In: Asian Journal of Civil Engineering.

    https://doi.org/10.1007/s42107-024-01211-9

  3. Saha, Amit / Sapkota, Sanjog Chhetri / Saha, Prasenjit / Debnath, Prasenjit / Hazari, Suman / Das, Sourav / Samui, Pijush: Prediction of bearing capacity of geogrid-reinforced sand over stone columns in soft clay. In: Proceedings of the Institution of Civil Engineers - Ground Improvement.

    https://doi.org/10.1680/jgrim.24.00032

  4. Panth, Gaurav / Shrestha, Ajad / Sapkota, Sanjog Chhetri (2024): Comparative nonlinear analysis of confined masonry walls: simplified micro-modelling versus finite element modelling in ETABS. In: Asian Journal of Civil Engineering, v. 25, n. 7 (July 2024).

    https://doi.org/10.1007/s42107-024-01123-8

  5. Shrestha, Ajad / Sapkota, Sanjog Chhetri (2024): Hybrid machine learning model to predict the mechanical properties of ultra-high-performance concrete (UHPC) with experimental validation. In: Asian Journal of Civil Engineering, v. 25, n. 7 (July 2024).

    https://doi.org/10.1007/s42107-024-01109-6

  6. Sapkota, Sanjog Chhetri / Das, Sourav / Saha, Prasenjit (2024): Optimized machine learning models for prediction of effective stiffness of rectangular reinforced concrete column sections. In: Structures, v. 62 (April 2024).

    https://doi.org/10.1016/j.istruc.2024.106155

  7. Ghani, Sufyan / Sapkota, Sanjog Chhetri / Singh, Raushan Kumar / Bardhan, Abidhan / Asteris, Panagiotis G. (2024): Modelling and validation of liquefaction potential index of fine-grained soils using ensemble learning paradigms. In: Soil Dynamics and Earthquake Engineering, v. 177 (February 2024).

    https://doi.org/10.1016/j.soildyn.2023.108399

  8. Sapkota, Sanjog Chhetri / Saha, Prasenjit / Das, Sourav / Meesaraganda, L. V. Prasad (2023): Prediction of the compressive strength of normal concrete using ensemble machine learning approach. In: Asian Journal of Civil Engineering, v. 25, n. 1 (July 2023).

    https://doi.org/10.1007/s42107-023-00796-x

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine