0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Sumrerng Rukzon

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Rukzon, Sumrerng / Chindaprasirt, Prinya (2009): Strength and chloride penetration of Portland cement mortar containing palm oil fuel ash and ground river sand. In: Computers and Concrete, v. 6, n. 5 (October 2009).

    https://doi.org/10.12989/cac.2009.6.5.391

  2. Rukzon, Sumrerng / Chindaprasirt, Prinya (2008): Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar. In: Computers and Concrete, v. 5, n. 1 (February 2008).

    https://doi.org/10.12989/cac.2008.5.1.075

  3. Chotetanorm, Chaicharn / Chindaprasirt, Prinya / Sata, Vanchai / Rukzon, Sumrerng / Sathonsaowaphak, Apha (2013): High-Calcium Bottom Ash Geopolymer: Sorptivity, Pore Size, and Resistance to Sodium Sulfate Attack. In: Journal of Materials in Civil Engineering (ASCE), v. 25, n. 1 (January 2013).

    https://doi.org/10.1061/(asce)mt.1943-5533.0000560

  4. Chindaprasirt, Prinya / Chotetanorm, Chaicharn / Rukzon, Sumrerng (2011): Use of Palm Oil Fuel Ash to Improve Chloride and Corrosion Resistance of High-Strength and High-Workability Concrete. In: Journal of Materials in Civil Engineering (ASCE), v. 23, n. 4 (April 2011).

    https://doi.org/10.1061/(asce)mt.1943-5533.0000187

  5. Chindaprasirt, Prinya / Rukzon, Sumrerng (2009): Pore Structure Changes of Blended Cement Pastes Containing Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash Caused by Carbonation. In: Journal of Materials in Civil Engineering (ASCE), v. 21, n. 11 (November 2009).

    https://doi.org/10.1061/(asce)0899-1561(2009)21:11(666)

  6. Rukzon, Sumrerng / Chindaprasirt, Prinya (2010): Strength and Carbonation Model of Rice Husk Ash Cement Mortar with Different Fineness. In: Journal of Materials in Civil Engineering (ASCE), v. 22, n. 3 (March 2010).

    https://doi.org/10.1061/(asce)0899-1561(2010)22:3(253)

  7. Chindaprasirt, Prinya / Rukzon, Sumrerng / Sirivivatnanon, Vute (2008): Effect of carbon dioxide on chloride penetration and chloride ion diffusion coefficient of blended Portland cement mortar. In: Construction and Building Materials, v. 22, n. 8 (August 2008).

    https://doi.org/10.1016/j.conbuildmat.2007.06.002

  8. Chindaprasirt, Prinya / Rukzon, Sumrerng (2015): Strength and chloride resistance of the blended Portland cement mortar containing rice husk ash and ground river sand. In: Materials and Structures, v. 48, n. 11 (November 2015).

    https://doi.org/10.1617/s11527-014-0438-9

  9. Rukzon, Sumrerng / Chindaprasirt, Prinya (2014): Use of ternary blend of Portland cement and two pozzolans to improve durability of high-strength concrete. In: KSCE Journal of Civil Engineering, v. 18, n. 6 (August 2014).

    https://doi.org/10.1007/s12205-014-0461-y

  10. Rukzon, Sumrerng / Chindaprasirt, Prinya (2014): Use of Rice Husk-Bark Ash in Producing Self-Compacting Concrete. In: Advances in Civil Engineering, v. 2014 ( 2014).

    https://doi.org/10.1155/2014/429727

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine