0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Sulapha Peethamparan ORCID

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Arachchige, Roshan Muththa / Olek, Jan / Rajabipour, Farshad / Peethamparan, Sulapha (2024): Phase identification and micromechanical properties of non-traditional and natural pozzolan based alkali-activated materials. In: Construction and Building Materials, v. 441 (August 2024).

    https://doi.org/10.1016/j.conbuildmat.2024.137478

  2. Balachandran, Chandni / Munoz, Jose F. / Peethamparan, Sulapha / Arnold, Terence S. (2024): A multianalytical approach to understand the relationship between ASR mitigation mechanisms of class F fly ash in highly reactive systems. In: Materials and Structures, v. 57, n. 4 (12 April 2024).

    https://doi.org/10.1617/s11527-024-02342-w

  3. Arachchige, Roshan Muththa / Olek, Jan / Rajabipour, Farshad / Peethamparan, Sulapha (2023): Non-traditional aluminosilicate based alkali-activated mortars - statistical optimization of solution parameters and processing conditions for optimal compressive strength, workability and setting time. In: Construction and Building Materials, v. 409 (December 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.134096

  4. Peethamparan, Sulapha / Olek, Jan / Diamond, Sidney (2009): Mechanism of stabilization of Na-montmorillonite clay with cement kiln dust. In: Cement and Concrete Research, v. 39, n. 7 (July 2009).

    https://doi.org/10.1016/j.cemconres.2009.03.013

  5. Peethamparan, Sulapha / Olek, Jan / Lovell, Janet (2008): Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization. In: Cement and Concrete Research, v. 38, n. 6 (June 2008).

    https://doi.org/10.1016/j.cemconres.2008.01.011

  6. Zhang, Jie / Weissinger, Emily A. / Peethamparan, Sulapha / Scherer, George W. (2010): Early hydration and setting of oil well cement. In: Cement and Concrete Research, v. 40, n. 7 (July 2010).

    https://doi.org/10.1016/j.cemconres.2010.03.014

  7. Thomas, R. J. / Lezama, Diego / Peethamparan, Sulapha (2017): On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. In: Cement and Concrete Research, v. 91 (January 2017).

    https://doi.org/10.1016/j.cemconres.2016.10.003

  8. Kumarappa, Darshan Ballekere / Peethamparan, Sulapha / Ngami, Margueritte (2018): Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. In: Cement and Concrete Research, v. 109 (July 2018).

    https://doi.org/10.1016/j.cemconres.2018.04.004

  9. Balachandran, Chandni / Munoz, Jose F. / Peethamparan, Sulapha / Arnold, Terence S. (2023): Alkali -silica reaction and its dynamic relationship with cement pore solution in highly reactive systems. In: Construction and Building Materials, v. 362 (January 2023).

    https://doi.org/10.1016/j.conbuildmat.2022.129702

  10. Ariyachandra, Erandi / Peethamparan, Sulapha / Patel, Shrish / Orlov, Alexander (2021): Chloride diffusion and binding in concrete containing NO2 sequestered recycled concrete aggregates (NRCAs). In: Construction and Building Materials, v. 291 (July 2021).

    https://doi.org/10.1016/j.conbuildmat.2021.123328

  11. Li, Zihui / Peethamparan, Sulapha (2018): Leaching resistance of alkali-activated slag and fly ash mortars exposed to organic acid. In: Green Materials, v. 6, n. 3 (September 2018).

    https://doi.org/10.1680/jgrma.18.00021

  12. Kumarappa, Darshan Ballekere / Peethamparan, Sulapha (2020): Stress-strain characteristics and brittleness index of alkali-activated slag and class C fly ash mortars. In: Journal of Building Engineering, v. 32 (November 2020).

    https://doi.org/10.1016/j.jobe.2020.101595

  13. Thomas, R. J. / Ariyachandra, Erandi / Lezama, Diego / Peethamparan, Sulapha (2018): Comparison of chloride permeability methods for Alkali-Activated concrete. In: Construction and Building Materials, v. 165 (March 2018).

    https://doi.org/10.1016/j.conbuildmat.2018.01.016

  14. Chandrasiri, Chathurani / Yehdego, Tesfamichael / Peethamparan, Sulapha (2019): Synthesis and characterization of bio-cement from conch shell waste. In: Construction and Building Materials, v. 212 (July 2019).

    https://doi.org/10.1016/j.conbuildmat.2019.04.031

  15. Peethamparan, Sulapha / Olek, Jan (2008): Study of the Effectiveness of Cement Kiln Dusts in Stabilizing Na-Montmorillonite Clay. In: Journal of Materials in Civil Engineering (ASCE), v. 20, n. 2 (February 2008).

    https://doi.org/10.1061/(asce)0899-1561(2008)20:2(137)

  16. Siriwardena, Dinusha P. / Peethamparan, Sulapha (2015): Quantification of CO2 sequestration capacity and carbonation rate of alkaline industrial byproducts. In: Construction and Building Materials, v. 91 (August 2015).

    https://doi.org/10.1016/j.conbuildmat.2015.05.035

  17. Thomas, Robert J. / Peethamparan, Sulapha (2015): Alkali-activated concrete: Engineering properties and stress–strain behavior. In: Construction and Building Materials, v. 93 (September 2015).

    https://doi.org/10.1016/j.conbuildmat.2015.04.039

  18. Gebregziabiher, Berhan Seium / Thomas, Robert J. / Peethamparan, Sulapha (2016): Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. In: Construction and Building Materials, v. 113 (June 2016).

    https://doi.org/10.1016/j.conbuildmat.2016.03.098

  19. Thomas, R. J. / Peethamparan, Sulapha (2017): Stepwise regression modeling for compressive strength of alkali-activated concrete. In: Construction and Building Materials, v. 141 (June 2017).

    https://doi.org/10.1016/j.conbuildmat.2017.03.006

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine