0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Mohammed, A. / Afshan, S. (2019): Numerical modelling and fire design of stainless steel hollow section columns. In: Thin-Walled Structures, v. 144 (November 2019).

    https://doi.org/10.1016/j.tws.2019.106243

  2. Mohammed, A. / Afshan, S. (2022): Modelling and Design of Stainless Steel Hollow Section Beam-Column Members in Fire. In: International Journal of Steel Structures, v. 23, n. 1 (October 2022).

    https://doi.org/10.1007/s13296-022-00683-2

  3. Vipulanandan, C. / Mohammed, A. (2019): Quantify the effect of temperature on the electrical resistivity, yield stress, and HPHT fluid loss of the bentonite-clay drilling mud modified with acrylamide polymer. In: Journal of Building Pathology and Rehabilitation, v. 5, n. 1 (18 November 2019).

    https://doi.org/10.1007/s41024-020-00085-z

  4. Mohammed, A. / Sanjayan, J. G. / Nazari, A. / Al-Saadi, N. T. K. (2018): The role of graphene oxide in limited long-term carbonation of cement-based matrix. In: Construction and Building Materials, v. 168 (April 2018).

    https://doi.org/10.1016/j.conbuildmat.2018.02.082

  5. Mohammed, A. / Al-Saadi, N. T. K. / Sanjayan, J. (2018): Inclusion of graphene oxide in cementitious composites: state-of-the-art review. In: Australian Journal of Civil Engineering, v. 16, n. 2 ( 2018).

    https://doi.org/10.1080/14488353.2018.1450699

  6. Mohammed, A. / Sanjayan, J. G. / Nazari, A. / Bagheri, A. / Al-Saadi, N. T. K. (2017): Inhibition of carbonation attack in cement-based matrix due to adding graphene oxide. In: Australian Journal of Civil Engineering, v. 15, n. 1 ( 2017).

    https://doi.org/10.1080/14488353.2017.1367252

  7. Mohammed, A. / Sanjayan, J. G. / Nazari, A. / Al-Saadi, N. T. K. (2017): Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature. In: Australian Journal of Civil Engineering, v. 15, n. 1 ( 2017).

    https://doi.org/10.1080/14488353.2017.1372849

  8. Mohammed, A. / Sanjayan, J. G. / Duan, W. H. / Nazari, A. (2016): Graphene Oxide Impact on Hardened Cement Expressed in Enhanced Freeze–Thaw Resistance. In: Journal of Materials in Civil Engineering (ASCE), v. 28, n. 9 (September 2016).

    https://doi.org/10.1061/(asce)mt.1943-5533.0001586

  9. Mohammed, A. / Hughes, T. G. / Mustapha, A. (2011): The effect of scale on the structural behaviour of masonry under compression. In: Construction and Building Materials, v. 25, n. 1 (January 2011).

    https://doi.org/10.1016/j.conbuildmat.2010.06.025

  10. Mohammed, A. / Sanjayan, J. G. / Duan, W. H. / Nazari, A. (2015): Incorporating graphene oxide in cement composites: A study of transport properties. In: Construction and Building Materials, v. 84 (June 2015).

    https://doi.org/10.1016/j.conbuildmat.2015.01.083

  11. Mohammed, A. / Al-Saadi, N. T. K. / Al-Mahaidi, R. (2016): Bond behaviour between NSM CFRP strips and concrete at high temperature using innovative high-strength self-compacting cementitious adhesive (IHSSC-CA) made with graphene oxide. In: Construction and Building Materials, v. 127 (November 2016).

    https://doi.org/10.1016/j.conbuildmat.2016.10.066

  12. Mohammed, A. / Hughes, T. G. (2011): Prototype and model masonry behaviour under different loading conditions. In: Materials and Structures, v. 44, n. 1 (January 2011).

    https://doi.org/10.1617/s11527-010-9608-6

  13. Vipulanandan, C. / Mohammed, A. (2015): Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications. In: Smart Materials and Structures, v. 24, n. 12 (December 2015).

    https://doi.org/10.1088/0964-1726/24/12/125020

  14. Mohammed, A. / Al-Saadi, N. T. K. / Al-Mahaidi, R. (2017): Utilization of Graphene Oxide to Synthesize High-Strength Cement-Based Adhesive. In: Journal of Materials in Civil Engineering (ASCE), v. 29, n. 4 (April 2017).

    https://doi.org/10.1061/(asce)mt.1943-5533.0001705

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine