0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Armagan Karamanli

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Karamanli, Armagan / Vo, Thuc P. / Belarbi, Mohamed-Ouejdi / Lee, Seunghye (2025): On the bending, buckling and free vibration analysis of bio-inspired helicoidal laminated composite shear and normal deformable beams. In: Composite Structures, v. 352 (January 2025).

    https://doi.org/10.1016/j.compstruct.2024.118641

  2. Pham, Sang D. / Karamanli, Armagan / Wattanasakulpong, Nuttawit / Vo, Thuc P. (2024): A Quasi-3D theory for bending, vibration and buckling analysis of FG-CNTRC and GPLRC curved beams. In: Structures, v. 63 (May 2024).

    https://doi.org/10.1016/j.istruc.2024.106431

  3. Karamanli, Armagan / Wattanasakulpong, Nuttawit / Lezgy-Nazargah, M. / Vo, Thuc P. (2023): Bending, buckling and free vibration behaviours of 2D functionally graded curved beams. In: Structures, v. 55 (September 2023).

    https://doi.org/10.1016/j.istruc.2023.06.052

  4. Lezgy-Nazargah, M. / Karamanli, Armagan / Vo, Thuc P. (2023): Bending, buckling and free vibration analyses of shallow-to-deep FG curved sandwich beams using a global–local refined shear deformation theory. In: Structures, v. 52 (June 2023).

    https://doi.org/10.1016/j.istruc.2023.04.008

  5. Karamanli, Armagan / Eltaher, Mohamed A. / Thai, Son / Vo, Thuc P. (2023): Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model. In: Engineering Structures, v. 278 (March 2023).

    https://doi.org/10.1016/j.engstruct.2022.115566

  6. Karamanli, Armagan (2023): Transient vibration analysis of strain gradient multi-directional functionally graded microplates under a moving concentrated load. In: Composite Structures, v. 308 (March 2023).

    https://doi.org/10.1016/j.compstruct.2023.116678

  7. Nguyen, Ngoc-Hien / Tong, Kien T. / Lee, Seunghye / Karamanli, Armagan / Vo, Thuc P. (2022): Prediction compressive strength of cement-based mortar containing metakaolin using explainable Categorical Gradient Boosting model. In: Engineering Structures, v. 269 (October 2022).

    https://doi.org/10.1016/j.engstruct.2022.114768

  8. Lee, Seunghye / Nguyen, Ngoc‐Hien / Karamanli, Armagan / Lee, Jaehong / Vo, Thuc P. (2023): Super learner machine‐learning algorithms for compressive strength prediction of high performance concrete. In: Structural Concrete, v. 24, n. 2 (April 2023).

    https://doi.org/10.1002/suco.202200424

  9. Karamanli, Armagan / Vo, Thuc P. (2022): Finite element model for free vibration analysis of curved zigzag nanobeams. In: Composite Structures, v. 282 (February 2022).

    https://doi.org/10.1016/j.compstruct.2021.115097

  10. Karamanli, Armagan / Vo, Thuc P. (2021): Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams. In: Composite Structures, v. 264 (May 2021).

    https://doi.org/10.1016/j.compstruct.2021.113739

  11. Karamanli, Armagan / Aydogdu, Metin (2021): Vibration behaviors of two-directional carbon nanotube reinforced functionally graded composite plates. In: Composite Structures, v. 262 (April 2021).

    https://doi.org/10.1016/j.compstruct.2021.113639

  12. Karamanli, Armagan / Vo, Thuc P. (2021): A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. In: Composite Structures, v. 257 (February 2021).

    https://doi.org/10.1016/j.compstruct.2020.113066

  13. Karamanli, Armagan (2021): Size-dependent behaviors of three directional functionally graded shear and normal deformable imperfect microplates. In: Composite Structures, v. 257 (February 2021).

    https://doi.org/10.1016/j.compstruct.2020.113076

  14. Karamanli, Armagan / Vo, Thuc P. (2020): Size-dependent behaviour of functionally graded sandwich microbeams based on the modified strain gradient theory. In: Composite Structures, v. 246 (August 2020).

    https://doi.org/10.1016/j.compstruct.2020.112401

  15. Karamanli, Armagan / Aydogdu, Metin (2020): Bifurcation buckling conditions of FGM plates with different boundaries. In: Composite Structures, v. 245 (August 2020).

    https://doi.org/10.1016/j.compstruct.2020.112325

  16. Karamanli, Armagan / Aydogdu, Metin (2020): Vibration of functionally graded shear and normal deformable porous microplates via finite element method. In: Composite Structures, v. 237 (April 2020).

    https://doi.org/10.1016/j.compstruct.2020.111934

  17. Karamanli, Armagan (2018): Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory. In: Composite Structures, v. 189 (April 2018).

    https://doi.org/10.1016/j.compstruct.2018.01.060

  18. Vo, Thuc P. / Thai, Huu-Tai / Nguyen, Trung-Kien / Lanc, Domagoj / Karamanli, Armagan (2017): Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory. In: Composite Structures, v. 176 (September 2017).

    https://doi.org/10.1016/j.compstruct.2017.05.041

  19. Karamanli, Armagan (2017): Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory. In: Composite Structures, v. 174 (August 2017).

    https://doi.org/10.1016/j.compstruct.2017.04.046

  20. Karamanli, Armagan (2017): Elastostatic analysis of two-directional functionally graded beams using various beam theories and Symmetric Smoothed Particle Hydrodynamics method. In: Composite Structures, v. 160 (January 2017).

    https://doi.org/10.1016/j.compstruct.2016.10.065

  21. Karamanli, Armagan / Aydogdu, Metin (2019): On the vibration of size dependent rotating laminated composite and sandwich microbeams via a transverse shear-normal deformation theory. In: Composite Structures, v. 216 (May 2019).

    https://doi.org/10.1016/j.compstruct.2019.02.044

  22. Karamanli, Armagan / Aydogdu, Metin (2019): Buckling of laminated composite and sandwich beams due to axially varying in-plane loads. In: Composite Structures, v. 210 (February 2019).

    https://doi.org/10.1016/j.compstruct.2018.11.067

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine