0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Catherine Gorlé ORCID

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Vargiemezis, Themistoklis / Gorlé, Catherine (2025): A predictive large-eddy simulation framework for the analysis of wind loads on a realistic low-rise building geometry. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 256 (January 2025).

    https://doi.org/10.1016/j.jweia.2024.105950

  2. Hochschild, John / Gorlé, Catherine (2024): Comparison of measured and LES-predicted wind pressures on the Space Needle. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 249 (June 2024).

    https://doi.org/10.1016/j.jweia.2024.105749

  3. Hochschild, John / Gorlé, Catherine (2024): Design and demonstration of a sensing network for full-scale wind pressure measurements on buildings. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 250 (July 2024).

    https://doi.org/10.1016/j.jweia.2024.105760

  4. Ciarlatani, Mattia Fabrizio / Huang, Zhu / Philips, David / Gorlé, Catherine (2023): Investigation of peak wind loading on a high-rise building in the atmospheric boundary layer using large-eddy simulations. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 236 (May 2023).

    https://doi.org/10.1016/j.jweia.2023.105408

  5. Chen, Chen / Chew, Lup Wai / Gorlé, Catherine (2023): Characterizing spatial variability in the temperature field to support thermal model validation in a naturally ventilated building. In: Journal of Building Performance Simulation, v. 16, n. 4 (January 2023).

    https://doi.org/10.1080/19401493.2023.2179115

  6. Hwang, Yunjae / Gorlé, Catherine (2022): Large-Eddy Simulations of Wind-Driven Cross Ventilation, Part 2: Comparison of Ventilation Performance Under Different Ventilation Configurations. In: Frontiers in Built Environment, v. 8 (February 2022).

    https://doi.org/10.3389/fbuil.2022.911253

  7. Hwang, Yunjae / Gorlé, Catherine (2022): Large-Eddy Simulations of Wind-Driven Cross Ventilation, Part1: Validation and Sensitivity Study. In: Frontiers in Built Environment, v. 8 (February 2022).

    https://doi.org/10.3389/fbuil.2022.911005

  8. Chen, Chen / Gorlé, Catherine (2022): Full-scale validation of CFD simulations of buoyancy-driven ventilation in a three-story office building. In: Building and Environment, v. 221 (August 2022).

    https://doi.org/10.1016/j.buildenv.2022.109240

  9. Gorlé, Catherine (2022): Improving the predictive capability of building simulations using uncertainty quantification. In: Science and Technology for the Built Environment, v. 28, n. 5 (April 2022).

    https://doi.org/10.1080/23744731.2022.2079261

  10. Chew, Lup Wai / Chen, Chen / Gorlé, Catherine (2022): Improving thermal model predictions for naturally ventilated buildings using large eddy simulations. In: Building and Environment, v. 220 (July 2022).

    https://doi.org/10.1016/j.buildenv.2022.109241

  11. Pomaranzi, Giulia / Amerio, Luca / Schito, Paolo / Lamberti, Giacomo / Gorlé, Catherine / Zasso, Alberto (2022): Wind tunnel pressure data analysis for peak cladding load estimation on a high-rise building. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 220 (January 2022).

    https://doi.org/10.1016/j.jweia.2021.104855

  12. Chen, Chen / Gorlé, Catherine (2022): Optimal temperature sensor placement in buildings with buoyancy-driven natural ventilation using computational fluid dynamics and uncertainty quantification. In: Building and Environment, v. 207 (January 2022).

    https://doi.org/10.1016/j.buildenv.2021.108496

  13. Lamberti, Giacomo / Gorlé, Catherine (2021): A multi-fidelity machine learning framework to predict wind loads on buildings. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 214 (July 2021).

    https://doi.org/10.1016/j.jweia.2021.104647

  14. Lamberti, Giacomo / Gorlé, Catherine (2018): Uncertainty quantification for modeling night-time ventilation in Stanford’s Y2E2 building. In: Energy and Buildings, v. 168 (June 2018).

    https://doi.org/10.1016/j.enbuild.2018.03.022

  15. Lamberti, Giacomo / Gorlé, Catherine (2020): Sensitivity of LES predictions of wind loading on a high-rise building to the inflow boundary condition. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 206 (November 2020).

    https://doi.org/10.1016/j.jweia.2020.104370

  16. Lamberti, Giacomo / Amerio, Luca / Pomaranzi, Giulia / Zasso, Alberto / Gorlé, Catherine (2020): Comparison of high resolution pressure measurements on a high-rise building in a closed and open-section wind tunnel. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 204 (September 2020).

    https://doi.org/10.1016/j.jweia.2020.104247

  17. Sousa, Jorge / Gorlé, Catherine (2019): Computational urban flow predictions with Bayesian inference: Validation with field data. In: Building and Environment, v. 154 (May 2019).

    https://doi.org/10.1016/j.buildenv.2019.02.028

  18. Sousa, Jorge / García-Sánchez, Clara / Gorlé, Catherine (2018): Improving urban flow predictions through data assimilation. In: Building and Environment, v. 132 (March 2018).

    https://doi.org/10.1016/j.buildenv.2018.01.032

  19. Lamberti, Giacomo / García-Sánchez, Clara / Sousa, Jorge / Gorlé, Catherine (2018): Optimizing turbulent inflow conditions for large-eddy simulations of the atmospheric boundary layer. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 177 (June 2018).

    https://doi.org/10.1016/j.jweia.2018.04.004

  20. Gorlé, Catherine / García-Sánchez, Clara / Iaccarino, Gianluca (2015): Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows. In: Journal of Wind Engineering and Industrial Aerodynamics, v. 144 (September 2015).

    https://doi.org/10.1016/j.jweia.2015.03.025

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine