0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Jakub Gajewski ORCID

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Rogala, Michał / Gajewski, Jakub / Gawdzińska, Katarzyna (2022): Crashworthiness analysis of thin-walled aluminum columns filled with aluminum–silicon carbide composite foam. In: Composite Structures, v. 299 (November 2022).

    https://doi.org/10.1016/j.compstruct.2022.116102

  2. Gajewski, Jakub / Golewski, Przemysław / Sadowski, Tomasz (2017): Geometry optimization of a thin-walled element for an air structure using hybrid system integrating artificial neural network and finite element method. In: Composite Structures, v. 159 (January 2017).

    https://doi.org/10.1016/j.compstruct.2016.10.007

  3. Hasilová, Kamila / Gajewski, Jakub (2019): The use of kernel density estimates for classification of ripping tool wear. In: Tunnelling and Underground Space Technology, v. 88 (June 2019).

    https://doi.org/10.1016/j.tust.2019.03.001

  4. Gajewski, Jakub / Jonak, Józef (2011): Towards the identification of worn picks on cutterdrums based on torque and power signals using Artificial Neural Networks. In: Tunnelling and Underground Space Technology, v. 26, n. 1 (January 2011).

    https://doi.org/10.1016/j.tust.2010.08.005

  5. Jonak, Józef / Gajewski, Jakub (2006): Identifying the cutting tool type used in excavations using neural networks. In: Tunnelling and Underground Space Technology, v. 21, n. 2 (March 2006).

    https://doi.org/10.1016/j.tust.2005.07.002

  6. Gajewski, Jakub / Jonak, Józef (2006): Utilisation of neural networks to identify the status of the cutting tool point. In: Tunnelling and Underground Space Technology, v. 21, n. 2 (March 2006).

    https://doi.org/10.1016/j.tust.2005.07.003

  7. Jonak, Józef / Gajewski, Jakub (2008): Identification of ripping tool types with the use of characteristic statistical parameters of time graphs. In: Tunnelling and Underground Space Technology, v. 23, n. 1 (January 2008).

    https://doi.org/10.1016/j.tust.2006.12.002

  8. Jedliński, Łukasz / Gajewski, Jakub (2019): Optimal selection of signal features in the diagnostics of mining head tools condition. In: Tunnelling and Underground Space Technology, v. 84 (February 2019).

    https://doi.org/10.1016/j.tust.2018.11.042

  9. Gajewski, Jakub / Jedliński, Łukasz / Jonak, Józef (2013): Classification of wear level of mining tools with the use of fuzzy neural network. In: Tunnelling and Underground Space Technology, v. 35 (April 2013).

    https://doi.org/10.1016/j.tust.2012.12.002

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine