0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

J. R. Banerjee

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Banerjee, J. R. (2024): Coupled axial-flexural buckling of shear deformable columns using an exact stiffness matrix. In: Computers & Structures, v. 298 (July 2024).

    https://doi.org/10.1016/j.compstruc.2024.107349

  2. Banerjee, J. R. (2024): An exact method for free vibration of beams and frameworks using frequency-dependent mass, elastic and geometric stiffness matrices. In: Computers & Structures, v. 292 (February 2024).

    https://doi.org/10.1016/j.compstruc.2023.107235

  3. Papkov, S. O. / Banerjee, J. R. (2022): Dynamic stiffness formulation for isotropic and orthotropic plates with point nodes. In: Computers & Structures, v. 270 (October 2022).

    https://doi.org/10.1016/j.compstruc.2022.106827

  4. Su, H. / Banerjee, J. R. (2005): Exact natural frequencies of structures consisting of two-part beam-mass systems. In: Structural Engineering and Mechanics, v. 19, n. 5 (March 2005).

    https://doi.org/10.12989/sem.2005.19.5.551

  5. Liu, X. / Kassem, H. I. / Banerjee, J. R. (2016): An exact spectral dynamic stiffness theory for composite plate-like structures with arbitrary non-uniform elastic supports, mass attachments and coupling constraints. In: Composite Structures, v. 142 (May 2016).

    https://doi.org/10.1016/j.compstruct.2016.01.074

  6. Liu, X. / Banerjee, J. R. (2015): An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies – Part II: Applications. In: Composite Structures, v. 132 (November 2015).

    https://doi.org/10.1016/j.compstruct.2015.07.022

  7. Liu, X. / Banerjee, J. R. (2015): An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies – Part I: Theory. In: Composite Structures, v. 132 (November 2015).

    https://doi.org/10.1016/j.compstruct.2015.07.020

  8. Pagani, A. / Carrera, E. / Banerjee, J. R. / Cabral, P. H. / Caprio, G. / Prado, A. (2014): Free vibration analysis of composite plates by higher-order 1D dynamic stiffness elements and experiments. In: Composite Structures, v. 118 (December 2014).

    https://doi.org/10.1016/j.compstruct.2014.08.020

  9. Fazzolari, F. A. / Banerjee, J. R. (2014): Axiomatic/asymptotic PVD/RMVT-based shell theories for free vibrations of anisotropic shells using an advanced Ritz formulation and accurate curvature descriptions. In: Composite Structures, v. 108 (February 2014).

    https://doi.org/10.1016/j.compstruct.2013.08.037

  10. Su, H. / Banerjee, J. R. / Cheung, C. W. (2013): Dynamic stiffness formulation and free vibration analysis of functionally graded beams. In: Composite Structures, v. 106 (December 2013).

    https://doi.org/10.1016/j.compstruct.2013.06.029

  11. Fazzolari, F. A. / Boscolo, M. / Banerjee, J. R. (2013): An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies. In: Composite Structures, v. 96 (February 2013).

    https://doi.org/10.1016/j.compstruct.2012.08.033

  12. Fazzolari, F. A. / Banerjee, J. R. / Boscolo, M. (2013): Buckling of composite plate assemblies using higher order shear deformation theory—An exact method of solution. In: Thin-Walled Structures, v. 71 (October 2013).

    https://doi.org/10.1016/j.tws.2013.04.017

  13. Banerjee, J. R. / Ananthapuvirajah, A. (2019): Free flexural vibration of tapered beams. In: Computers & Structures, v. 224 (December 2019).

    https://doi.org/10.1016/j.compstruc.2019.106106

  14. Banerjee, J. R. / Ananthapuvirajah, A. (2019): Coupled axial-bending dynamic stiffness matrix for beam elements. In: Computers & Structures, v. 215 (April 2019).

    https://doi.org/10.1016/j.compstruc.2019.01.007

  15. Banerjee, J. R. (2003): Free vibration of sandwich beams using the dynamic stiffness method. In: Computers & Structures, v. 81, n. 18-19 (August 2003).

    https://doi.org/10.1016/s0045-7949(03)00211-6

  16. Banerjee, J. R. / Su, H. / Jayatunga, C. (2008): A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings. In: Computers & Structures, v. 86, n. 6 (March 2008).

    https://doi.org/10.1016/j.compstruc.2007.04.027

  17. Banerjee, J. R. / Su, H. (2004): Development of a dynamic stiffness matrix for free vibration analysis of spinning beams. In: Computers & Structures, v. 82, n. 23-26 (September 2004).

    https://doi.org/10.1016/j.compstruc.2004.03.058

  18. Liu, X. / Banerjee, J. R. (2016): Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method. In: Computers & Structures, v. 164 (February 2016).

    https://doi.org/10.1016/j.compstruc.2015.11.005

  19. Banerjee, J. R. (2013): Free vibration of beams carrying spring-mass systems − A dynamic stiffness approach. In: Computers & Structures, v. 114 (January 2013).

    https://doi.org/10.1016/j.compstruc.2012.02.020

  20. Boscolo, M. / Banerjee, J. R. (2013): Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and applications. In: Computers & Structures, v. 114 (January 2013).

    https://doi.org/10.1016/j.compstruc.2012.01.003

  21. Boscolo, M. / Banerjee, J. R. (2013): Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory. In: Computers & Structures, v. 114 (January 2013).

    https://doi.org/10.1016/j.compstruc.2012.01.002

  22. Boscolo, M. / Banerjee, J. R. (2011): Dynamic stiffness elements and their applications for plates using first order shear deformation theory. In: Computers & Structures, v. 89, n. 3-4 (February 2011).

    https://doi.org/10.1016/j.compstruc.2010.11.005

  23. Su, H. / Banerjee, J. R. (2015): Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. In: Computers & Structures, v. 147 (15 January 2015).

    https://doi.org/10.1016/j.compstruc.2014.10.001

  24. Banerjee, J. R. / Guo, S. / Howson, W. P. (1996): Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping. In: Computers & Structures, v. 59, n. 4 (May 1996).

    https://doi.org/10.1016/0045-7949(95)00307-x

  25. Banerjee, J. R. / Su, H. (2006): Dynamic stiffness formulation and free vibration analysis of a spinning composite beam. In: Computers & Structures, v. 84, n. 19-20 (July 2006).

    https://doi.org/10.1016/j.compstruc.2006.01.023

  26. Banerjee, J. R. / Williams, F. W. (1992): Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements. In: Computers & Structures, v. 42, n. 3 (February 1992).

    https://doi.org/10.1016/0045-7949(92)90026-v

  27. Banerjee, J. R. (1998): Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method. In: Computers & Structures, v. 69, n. 2 (October 1998).

    https://doi.org/10.1016/s0045-7949(98)00114-x

  28. Banerjee, J. R. (1997): Dynamic stiffness formulation for structural elements: A general approach. In: Computers & Structures, v. 63, n. 1 (April 1997).

    https://doi.org/10.1016/s0045-7949(96)00326-4

  29. Banerjee, J. R. / Williams, F. W. (1994): An exact dynamic stiffness matrix for coupled extensional-torsional vibration of structural members. In: Computers & Structures, v. 50, n. 2 (January 1994).

    https://doi.org/10.1016/0045-7949(94)90292-5

  30. Banerjee, J. R. / Jackson, D. R. (2013): Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution. In: Computers & Structures, v. 124 (August 2013).

    https://doi.org/10.1016/j.compstruc.2012.11.010

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine