0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Víctor Aguilar ORCID

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Fuentes, Nicolás A. / Flores, Jorge C. / Egger, Jorge E. / Vicencio, Felipe A. / Aguilar, Víctor / Yanez, Sergio J. (2023): Multivariate joint probability distributions for seismic design parameters across multiple building codes. In: Bulletin of Earthquake Engineering, v. 21, n. 14 (October 2023).

    https://doi.org/10.1007/s10518-023-01747-2

  2. Skibicki, Szymon / Zieliński, Adam / Aguilar, Víctor / Hurtado, Pablo E. / Kaszyńska, Maria / Nowak, Andrzej (2023): Optimization of a temporary road traffic steel barrier using explicit finite element method and laboratory testing. In: Engineering Structures, v. 291 (September 2023).

    https://doi.org/10.1016/j.engstruct.2023.116463

  3. Calderón, Sebastián / Sandoval, Cristián / Araya-Letelier, Gerardo / Aguilar, Víctor (2023): A detailed experimental mechanical characterization of multi-perforated clay brick masonry. In: Journal of Building Engineering, v. 63 (January 2023).

    https://doi.org/10.1016/j.jobe.2022.105505

  4. Aguilar, Víctor / Barnes, Robert W. / Nowak, Andrzej S. (2023): Data-driven professional factors for ACI 318 one-way shear strength. In: Structure and Infrastructure Engineering, v. 19, n. 9 (January 2023).

    https://doi.org/10.1080/15732479.2021.2013902

  5. Aguilar, Víctor / Barnes, Robert W. / Nowak, Andrzej S. (2022): Comparative Assessment of Shear Strength Equations for Reinforced Concrete. In: Practice Periodical on Structural Design and Construction, v. 27, n. 2 (May 2022).

    https://doi.org/10.1061/(asce)sc.1943-5576.0000666

  6. Aguilar, Víctor / Sandoval, Cristián / Adam, José M. / Garzón-Roca, Julio / Valdebenito, Galo (2016): Prediction of the shear strength of reinforced masonry walls using a large experimental database and artificial neural networks. In: Structure and Infrastructure Engineering, v. 12, n. 12 (December 2016).

    https://doi.org/10.1080/15732479.2016.1157824

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine