0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Wang, Hao / Li, Bin / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zang, Quansheng / Di, Danyang (2024): Interface bonding characteristics of the Cured-in-Place Pipe lined steel plates and parameter sensitivity analysis. Dans: Structures, v. 69 (novembre 2024).

    https://doi.org/10.1016/j.istruc.2024.107574

  2. Li, Bin / Wang, Xiangyang / Di, Danyang / Yu, Wei / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zhang, Tilang / Zhai, Kejie (2024): Prediction model of maximum stress for concrete pipes based on XGBoost-PSO algorithm. Dans: Structures, v. 68 (octobre 2024).

    https://doi.org/10.1016/j.istruc.2024.107205

  3. Di, Danyang / Li, Tianwei / Fang, Hongyuan / Xiao, Lizhong / Du, Xueming / Sun, Bin / Zhang, Jinping / Wang, Niannian / Li, Bin (2024): A CFD-DEM investigation into hydraulic transport and retardation response characteristics of drainage pipeline siltation using intelligent model. Dans: Tunnelling and Underground Space Technology, v. 152 (octobre 2024).

    https://doi.org/10.1016/j.tust.2024.105964

  4. Ma, Ying / Li, Bin / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zang, Quansheng / Zhai, Kejie / Di, Danyang (2024): Mechanical behavior and parameter sensitivity analysis of water supply steel pipes under complex service load combinations. Dans: Structures, v. 67 (septembre 2024).

    https://doi.org/10.1016/j.istruc.2024.106956

  5. Ma, Duo / Wang, Niannian / Fang, Hongyuan / Chen, Weiwei / Li, Bin / Zhai, Kejie: Attention‐optimized 3D segmentation and reconstruction system for sewer pipelines employing multi‐view images. Dans: Computer-Aided Civil and Infrastructure Engineering.

    https://doi.org/10.1111/mice.13241

  6. Liang, Jiasen / Du, Xueming / Fang, Hongyuan / Li, Bin / Wang, Niannian / Di, Danyang / Xue, Binghan / Zhai, Kejie / Wang, Shanyong (2024): Intelligent prediction model of a polymer fracture grouting effect based on a genetic algorithm-optimized back propagation neural network. Dans: Tunnelling and Underground Space Technology, v. 148 (juin 2024).

    https://doi.org/10.1016/j.tust.2024.105781

  7. Yu, Wei / Li, Bin / Fang, Hongyuan / Du, Xueming / Zhai, Kejie / Wang, Niannian / Di, Danyang / Du, Mingrui (2024): Mechanical characteristics of concrete pipes under the coupled effects of the pressure, seepage, and flow fields. Dans: Structures, v. 61 (mars 2024).

    https://doi.org/10.1016/j.istruc.2024.106053

  8. Wang, Niannian / Ma, Duo / Du, Xueming / Li, Bin / Di, Danyang / Pang, Gaozhao / Duan, Yihang (2024): An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes. Dans: Tunnelling and Underground Space Technology, v. 143 (janvier 2024).

    https://doi.org/10.1016/j.tust.2023.105480

  9. Fang, Hongyuan / Zhang, Zhaoyang / Di, Danyang / Zhang, Jinping / Sun, Bin / Wang, Niannian / Li, Bin (2023): Integrating fluid–solid coupling domain knowledge with deep learning models: An automatic and interpretable diagnostic system for the silting disease of drainage pipelines. Dans: Tunnelling and Underground Space Technology, v. 142 (décembre 2023).

    https://doi.org/10.1016/j.tust.2023.105386

  10. Hu, Haobang / Fang, Hongyuan / Wang, Niannian / Ma, Duo / Dong, Jiaxiu / Li, Bin / Di, Danyang / Zheng, Hongbiao / Wu, Jiang (2023): Defects identification and location of underground space for ground penetrating radar based on deep learning. Dans: Tunnelling and Underground Space Technology, v. 140 (octobre 2023).

    https://doi.org/10.1016/j.tust.2023.105278

  11. Ma, Duo / Fang, Hongyuan / Wang, Niannian / Pang, Gaozhao / Li, Bin / Dong, Jiaxiu / Jiang, Xue (2023): A low-cost 3D reconstruction and measurement system based on structure-from-motion (SFM) and multi-view stereo (MVS) for sewer pipelines. Dans: Tunnelling and Underground Space Technology, v. 141 (novembre 2023).

    https://doi.org/10.1016/j.tust.2023.105345

  12. Wang, Niannian / Dong, Jiaxiu / Fang, Hongyuan / Li, Bin / Zhai, Kejie / Ma, Duo / Shen, Yibo / Hu, Haobang (2023): 3D reconstruction and segmentation system for pavement potholes based on improved structure-from-motion (SFM) and deep learning. Dans: Construction and Building Materials, v. 398 (septembre 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.132499

  13. Du, Xueming / Fang, Hongyuan / Liu, Kang / Li, Bin / Wang, Niannian / Zhang, Chao / Wang, Shanyong (2023): Experimental and practical investigation of reinforcement mechanism on permeable polymer in loose area of drainage pipeline. Dans: Tunnelling and Underground Space Technology, v. 140 (octobre 2023).

    https://doi.org/10.1016/j.tust.2023.105250

  14. Du, Yuchuan / Zhong, Shan / Fang, Hongyuan / Wang, Niannian / Liu, Chenglong / Wu, Difei / Sun, Yan / Xiang, Mang (2023): Modeling automatic pavement crack object detection and pixel-level segmentation. Dans: Automation in Construction, v. 150 (juin 2023).

    https://doi.org/10.1016/j.autcon.2023.104840

  15. Wang, Niannian / Fang, Hongyuan / Xue, Binghan / Wu, Rui / Fang, Rui / Hu, Qunfang / Lv, Yaozhi (2023): Automatic Damage Segmentation Framework for Buried Sewer Pipes Based on Machine Vision: Case Study of Sewer Pipes in Zhengzhou, China. Dans: Journal of Infrastructure Systems, v. 29, n. 1 (mars 2023).

    https://doi.org/10.1061/(asce)is.1943-555x.0000729

  16. Zhai, Kejie / Fang, Hongyuan / Li, Bin / Guo, Chengchao / Yang, Kangjian / Du, Xueming / Du, Mingrui / Wang, Niannian (2023): Failure experiment on CFRP-strengthened prestressed concrete cylinder pipe with broken wires. Dans: Tunnelling and Underground Space Technology, v. 135 (mai 2023).

    https://doi.org/10.1016/j.tust.2023.105032

  17. Lu, Hongfang / Jiang, Xinmeng / Xu, Zhao-Dong / Wang, Niannian / Iseley, David T. (2023): Numerical study on mechanical properties of pipeline installed via horizontal directional drilling under static and dynamic traffic loads. Dans: Tunnelling and Underground Space Technology, v. 136 (juin 2023).

    https://doi.org/10.1016/j.tust.2023.105077

  18. Li, Bin / Fang, Hongyuan / Yang, Kangjian / Zhang, Xijun / Du, Xueming / Wang, Niannian / Guo, Xiaoxiang (2022): Impact of erosion voids and internal corrosion on concrete pipes under traffic loads. Dans: Tunnelling and Underground Space Technology, v. 130 (décembre 2022).

    https://doi.org/10.1016/j.tust.2022.104761

  19. Ma, Duo / Fang, Hongyuan / Wang, Niannian / Zheng, Hangwei / Dong, Jiaxiu / Hu, Haobang (2022): Automatic defogging, deblurring, and real-time segmentation system for sewer pipeline defects. Dans: Automation in Construction, v. 144 (décembre 2022).

    https://doi.org/10.1016/j.autcon.2022.104595

  20. Dong, Jiaxiu / Wang, Niannian / Fang, Hongyuan / Wu, Rui / Zheng, Chengzhi / Ma, Duo / Hu, Haobang (2022): Automatic damage segmentation in pavement videos by fusing similar feature extraction siamese network (SFE-SNet) and pavement damage segmentation capsule network (PDS-CapsNet). Dans: Automation in Construction, v. 143 (novembre 2022).

    https://doi.org/10.1016/j.autcon.2022.104537

  21. Lu, Hongfang / Peng, Haoyan / Xu, Zhao-Dong / Matthews, John C. / Wang, Niannian / Iseley, Tom (2022): A Feature Selection–Based Intelligent Framework for Predicting Maximum Depth of Corroded Pipeline Defects. Dans: Journal of Performance of Constructed Facilities (ASCE), v. 36, n. 5 (octobre 2022).

    https://doi.org/10.1061/(asce)cf.1943-5509.0001753

  22. Dong, Jiaxiu / Wang, Niannian / Fang, Hongyuan / Hu, Qunfang / Zhang, Chao / Ma, Baosong / Ma, Duo / Hu, Haobang (2022): Innovative method for pavement multiple damages segmentation and measurement by the Road-Seg-CapsNet of feature fusion. Dans: Construction and Building Materials, v. 324 (mars 2022).

    https://doi.org/10.1016/j.conbuildmat.2022.126719

  23. Ma, Duo / Liu, Jianhua / Fang, Hongyuan / Wang, Niannian / Zhang, Chao / Li, Zhaonan / Dong, Jiaxiu (2021): A Multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN. Dans: Construction and Building Materials, v. 312 (décembre 2021).

    https://doi.org/10.1016/j.conbuildmat.2021.125385

  24. Wang, Niannian / Zhao, Xuefeng / Wang, Linan / Zou, Zheng (2019): Novel System for Rapid Investigation and Damage Detection in Cultural Heritage Conservation Based on Deep Learning. Dans: Journal of Infrastructure Systems, v. 25, n. 3 (septembre 2019).

    https://doi.org/10.1061/(asce)is.1943-555x.0000499

  25. Wang, Niannian / Zhao, Qingan / Li, Shengyuan / Zhao, Xuefeng / Zhao, Peng (2018): Damage Classification for Masonry Historic Structures Using Convolutional Neural Networks Based on Still Images. Dans: Computer-Aided Civil and Infrastructure Engineering, v. 33, n. 12 (novembre 2018).

    https://doi.org/10.1111/mice.12411

  26. Zou, Zheng / Zhao, Xuefeng / Zhao, Peng / Qi, Fei / Wang, Niannian (2019): CNN-based statistics and location estimation of missing components in routine inspection of historic buildings. Dans: Journal of Cultural Heritage, v. 38 (juillet 2019).

    https://doi.org/10.1016/j.culher.2019.02.002

  27. Wang, Niannian / Zhao, Xuefeng / Zou, Zheng / Zhao, Peng / Qi, Fei (2020): Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning. Dans: Computer-Aided Civil and Infrastructure Engineering, v. 35, n. 3 (5 février 2020).

    https://doi.org/10.1111/mice.12488

  28. Yang, Yong / Xue, Yicong / Wang, Niannian / Yu, Yunlong (2019): Experimental and numerical study on seismic performance of deficient interior RC joints retrofitted with prestressed high-strength steel strips. Dans: Engineering Structures, v. 190 (juillet 2019).

    https://doi.org/10.1016/j.engstruct.2019.03.096

  29. Wang, Niannian / Zhao, Xuefeng / Zhao, Peng / Zhang, Yang / Zou, Zheng / Ou, Jinping (2019): Automatic damage detection of historic masonry buildings based on mobile deep learning. Dans: Automation in Construction, v. 103 (juillet 2019).

    https://doi.org/10.1016/j.autcon.2019.03.003

  30. Zhao, Xuefeng / Zhang, Yang / Wang, Niannian (2019): Bolt loosening angle detection technology using deep learning. Dans: Structural Control and Health Monitoring, v. 26, n. 1 (janvier 2019).

    https://doi.org/10.1002/stc.2292

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine