-
Wang, Hao / Li, Bin / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zang, Quansheng / Di, Danyang (2024): Interface bonding characteristics of the Cured-in-Place Pipe lined steel plates and parameter sensitivity analysis. In: Structures, v. 69 (November 2024).
https://doi.org/10.1016/j.istruc.2024.107574
-
Li, Bin / Wang, Xiangyang / Di, Danyang / Yu, Wei / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zhang, Tilang / Zhai, Kejie (2024): Prediction model of maximum stress for concrete pipes based on XGBoost-PSO algorithm. In: Structures, v. 68 (Oktober 2024).
https://doi.org/10.1016/j.istruc.2024.107205
-
Di, Danyang / Li, Tianwei / Fang, Hongyuan / Xiao, Lizhong / Du, Xueming / Sun, Bin / Zhang, Jinping / Wang, Niannian / Li, Bin (2024): A CFD-DEM investigation into hydraulic transport and retardation response characteristics of drainage pipeline siltation using intelligent model. In: Tunnelling and Underground Space Technology, v. 152 (Oktober 2024).
https://doi.org/10.1016/j.tust.2024.105964
-
Ma, Ying / Li, Bin / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zang, Quansheng / Zhai, Kejie / Di, Danyang (2024): Mechanical behavior and parameter sensitivity analysis of water supply steel pipes under complex service load combinations. In: Structures, v. 67 (September 2024).
https://doi.org/10.1016/j.istruc.2024.106956
-
Ma, Duo / Wang, Niannian / Fang, Hongyuan / Chen, Weiwei / Li, Bin / Zhai, Kejie: Attention‐optimized 3D segmentation and reconstruction system for sewer pipelines employing multi‐view images. In: Computer-Aided Civil and Infrastructure Engineering.
https://doi.org/10.1111/mice.13241
-
Liang, Jiasen / Du, Xueming / Fang, Hongyuan / Li, Bin / Wang, Niannian / Di, Danyang / Xue, Binghan / Zhai, Kejie / Wang, Shanyong (2024): Intelligent prediction model of a polymer fracture grouting effect based on a genetic algorithm-optimized back propagation neural network. In: Tunnelling and Underground Space Technology, v. 148 (Juni 2024).
https://doi.org/10.1016/j.tust.2024.105781
-
Yu, Wei / Li, Bin / Fang, Hongyuan / Du, Xueming / Zhai, Kejie / Wang, Niannian / Di, Danyang / Du, Mingrui (2024): Mechanical characteristics of concrete pipes under the coupled effects of the pressure, seepage, and flow fields. In: Structures, v. 61 (März 2024).
https://doi.org/10.1016/j.istruc.2024.106053
-
Wang, Niannian / Ma, Duo / Du, Xueming / Li, Bin / Di, Danyang / Pang, Gaozhao / Duan, Yihang (2024): An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes. In: Tunnelling and Underground Space Technology, v. 143 (Januar 2024).
https://doi.org/10.1016/j.tust.2023.105480
-
Fang, Hongyuan / Zhang, Zhaoyang / Di, Danyang / Zhang, Jinping / Sun, Bin / Wang, Niannian / Li, Bin (2023): Integrating fluid–solid coupling domain knowledge with deep learning models: An automatic and interpretable diagnostic system for the silting disease of drainage pipelines. In: Tunnelling and Underground Space Technology, v. 142 (Dezember 2023).
https://doi.org/10.1016/j.tust.2023.105386
-
Hu, Haobang / Fang, Hongyuan / Wang, Niannian / Ma, Duo / Dong, Jiaxiu / Li, Bin / Di, Danyang / Zheng, Hongbiao / Wu, Jiang (2023): Defects identification and location of underground space for ground penetrating radar based on deep learning. In: Tunnelling and Underground Space Technology, v. 140 (Oktober 2023).
https://doi.org/10.1016/j.tust.2023.105278
-
Ma, Duo / Fang, Hongyuan / Wang, Niannian / Pang, Gaozhao / Li, Bin / Dong, Jiaxiu / Jiang, Xue (2023): A low-cost 3D reconstruction and measurement system based on structure-from-motion (SFM) and multi-view stereo (MVS) for sewer pipelines. In: Tunnelling and Underground Space Technology, v. 141 (November 2023).
https://doi.org/10.1016/j.tust.2023.105345
-
Wang, Niannian / Dong, Jiaxiu / Fang, Hongyuan / Li, Bin / Zhai, Kejie / Ma, Duo / Shen, Yibo / Hu, Haobang (2023): 3D reconstruction and segmentation system for pavement potholes based on improved structure-from-motion (SFM) and deep learning. In: Construction and Building Materials, v. 398 (September 2023).
https://doi.org/10.1016/j.conbuildmat.2023.132499
-
Du, Xueming / Fang, Hongyuan / Liu, Kang / Li, Bin / Wang, Niannian / Zhang, Chao / Wang, Shanyong (2023): Experimental and practical investigation of reinforcement mechanism on permeable polymer in loose area of drainage pipeline. In: Tunnelling and Underground Space Technology, v. 140 (Oktober 2023).
https://doi.org/10.1016/j.tust.2023.105250
-
Du, Yuchuan / Zhong, Shan / Fang, Hongyuan / Wang, Niannian / Liu, Chenglong / Wu, Difei / Sun, Yan / Xiang, Mang (2023): Modeling automatic pavement crack object detection and pixel-level segmentation. In: Automation in Construction, v. 150 (Juni 2023).
https://doi.org/10.1016/j.autcon.2023.104840
-
Wang, Niannian / Fang, Hongyuan / Xue, Binghan / Wu, Rui / Fang, Rui / Hu, Qunfang / Lv, Yaozhi (2023): Automatic Damage Segmentation Framework for Buried Sewer Pipes Based on Machine Vision: Case Study of Sewer Pipes in Zhengzhou, China. In: Journal of Infrastructure Systems, v. 29, n. 1 (März 2023).
https://doi.org/10.1061/(asce)is.1943-555x.0000729
-
Zhai, Kejie / Fang, Hongyuan / Li, Bin / Guo, Chengchao / Yang, Kangjian / Du, Xueming / Du, Mingrui / Wang, Niannian (2023): Failure experiment on CFRP-strengthened prestressed concrete cylinder pipe with broken wires. In: Tunnelling and Underground Space Technology, v. 135 (Mai 2023).
https://doi.org/10.1016/j.tust.2023.105032
-
Lu, Hongfang / Jiang, Xinmeng / Xu, Zhao-Dong / Wang, Niannian / Iseley, David T. (2023): Numerical study on mechanical properties of pipeline installed via horizontal directional drilling under static and dynamic traffic loads. In: Tunnelling and Underground Space Technology, v. 136 (Juni 2023).
https://doi.org/10.1016/j.tust.2023.105077
-
Li, Bin / Fang, Hongyuan / Yang, Kangjian / Zhang, Xijun / Du, Xueming / Wang, Niannian / Guo, Xiaoxiang (2022): Impact of erosion voids and internal corrosion on concrete pipes under traffic loads. In: Tunnelling and Underground Space Technology, v. 130 (Dezember 2022).
https://doi.org/10.1016/j.tust.2022.104761
-
Ma, Duo / Fang, Hongyuan / Wang, Niannian / Zheng, Hangwei / Dong, Jiaxiu / Hu, Haobang (2022): Automatic defogging, deblurring, and real-time segmentation system for sewer pipeline defects. In: Automation in Construction, v. 144 (Dezember 2022).
https://doi.org/10.1016/j.autcon.2022.104595
-
Dong, Jiaxiu / Wang, Niannian / Fang, Hongyuan / Wu, Rui / Zheng, Chengzhi / Ma, Duo / Hu, Haobang (2022): Automatic damage segmentation in pavement videos by fusing similar feature extraction siamese network (SFE-SNet) and pavement damage segmentation capsule network (PDS-CapsNet). In: Automation in Construction, v. 143 (November 2022).
https://doi.org/10.1016/j.autcon.2022.104537
-
Lu, Hongfang / Peng, Haoyan / Xu, Zhao-Dong / Matthews, John C. / Wang, Niannian / Iseley, Tom (2022): A Feature Selection–Based Intelligent Framework for Predicting Maximum Depth of Corroded Pipeline Defects. In: Journal of Performance of Constructed Facilities (ASCE), v. 36, n. 5 (Oktober 2022).
https://doi.org/10.1061/(asce)cf.1943-5509.0001753
-
Dong, Jiaxiu / Wang, Niannian / Fang, Hongyuan / Hu, Qunfang / Zhang, Chao / Ma, Baosong / Ma, Duo / Hu, Haobang (2022): Innovative method for pavement multiple damages segmentation and measurement by the Road-Seg-CapsNet of feature fusion. In: Construction and Building Materials, v. 324 (März 2022).
https://doi.org/10.1016/j.conbuildmat.2022.126719
-
Ma, Duo / Liu, Jianhua / Fang, Hongyuan / Wang, Niannian / Zhang, Chao / Li, Zhaonan / Dong, Jiaxiu (2021): A Multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN. In: Construction and Building Materials, v. 312 (Dezember 2021).
https://doi.org/10.1016/j.conbuildmat.2021.125385
-
Wang, Niannian / Zhao, Xuefeng / Wang, Linan / Zou, Zheng (2019): Novel System for Rapid Investigation and Damage Detection in Cultural Heritage Conservation Based on Deep Learning. In: Journal of Infrastructure Systems, v. 25, n. 3 (September 2019).
https://doi.org/10.1061/(asce)is.1943-555x.0000499
-
Wang, Niannian / Zhao, Qingan / Li, Shengyuan / Zhao, Xuefeng / Zhao, Peng (2018): Damage Classification for Masonry Historic Structures Using Convolutional Neural Networks Based on Still Images. In: Computer-Aided Civil and Infrastructure Engineering, v. 33, n. 12 (November 2018).
https://doi.org/10.1111/mice.12411
-
Zou, Zheng / Zhao, Xuefeng / Zhao, Peng / Qi, Fei / Wang, Niannian (2019): CNN-based statistics and location estimation of missing components in routine inspection of historic buildings. In: Journal of Cultural Heritage, v. 38 (Juli 2019).
https://doi.org/10.1016/j.culher.2019.02.002
-
Wang, Niannian / Zhao, Xuefeng / Zou, Zheng / Zhao, Peng / Qi, Fei (2020): Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning. In: Computer-Aided Civil and Infrastructure Engineering, v. 35, n. 3 (5 Februar 2020).
https://doi.org/10.1111/mice.12488
-
Yang, Yong / Xue, Yicong / Wang, Niannian / Yu, Yunlong (2019): Experimental and numerical study on seismic performance of deficient interior RC joints retrofitted with prestressed high-strength steel strips. In: Engineering Structures, v. 190 (Juli 2019).
https://doi.org/10.1016/j.engstruct.2019.03.096
-
Wang, Niannian / Zhao, Xuefeng / Zhao, Peng / Zhang, Yang / Zou, Zheng / Ou, Jinping (2019): Automatic damage detection of historic masonry buildings based on mobile deep learning. In: Automation in Construction, v. 103 (Juli 2019).
https://doi.org/10.1016/j.autcon.2019.03.003
-
Zhao, Xuefeng / Zhang, Yang / Wang, Niannian (2019): Bolt loosening angle detection technology using deep learning. In: Structural Control and Health Monitoring, v. 26, n. 1 (Januar 2019).
https://doi.org/10.1002/stc.2292