0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Niannian Wang ORCID

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Wang, Hao / Li, Bin / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zang, Quansheng / Di, Danyang (2024): Interface bonding characteristics of the Cured-in-Place Pipe lined steel plates and parameter sensitivity analysis. In: Structures, v. 69 (November 2024).

    https://doi.org/10.1016/j.istruc.2024.107574

  2. Li, Bin / Wang, Xiangyang / Di, Danyang / Yu, Wei / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zhang, Tilang / Zhai, Kejie (2024): Prediction model of maximum stress for concrete pipes based on XGBoost-PSO algorithm. In: Structures, v. 68 (Oktober 2024).

    https://doi.org/10.1016/j.istruc.2024.107205

  3. Di, Danyang / Li, Tianwei / Fang, Hongyuan / Xiao, Lizhong / Du, Xueming / Sun, Bin / Zhang, Jinping / Wang, Niannian / Li, Bin (2024): A CFD-DEM investigation into hydraulic transport and retardation response characteristics of drainage pipeline siltation using intelligent model. In: Tunnelling and Underground Space Technology, v. 152 (Oktober 2024).

    https://doi.org/10.1016/j.tust.2024.105964

  4. Ma, Ying / Li, Bin / Fang, Hongyuan / Du, Xueming / Wang, Niannian / Zang, Quansheng / Zhai, Kejie / Di, Danyang (2024): Mechanical behavior and parameter sensitivity analysis of water supply steel pipes under complex service load combinations. In: Structures, v. 67 (September 2024).

    https://doi.org/10.1016/j.istruc.2024.106956

  5. Ma, Duo / Wang, Niannian / Fang, Hongyuan / Chen, Weiwei / Li, Bin / Zhai, Kejie: Attention‐optimized 3D segmentation and reconstruction system for sewer pipelines employing multi‐view images. In: Computer-Aided Civil and Infrastructure Engineering.

    https://doi.org/10.1111/mice.13241

  6. Liang, Jiasen / Du, Xueming / Fang, Hongyuan / Li, Bin / Wang, Niannian / Di, Danyang / Xue, Binghan / Zhai, Kejie / Wang, Shanyong (2024): Intelligent prediction model of a polymer fracture grouting effect based on a genetic algorithm-optimized back propagation neural network. In: Tunnelling and Underground Space Technology, v. 148 (Juni 2024).

    https://doi.org/10.1016/j.tust.2024.105781

  7. Yu, Wei / Li, Bin / Fang, Hongyuan / Du, Xueming / Zhai, Kejie / Wang, Niannian / Di, Danyang / Du, Mingrui (2024): Mechanical characteristics of concrete pipes under the coupled effects of the pressure, seepage, and flow fields. In: Structures, v. 61 (März 2024).

    https://doi.org/10.1016/j.istruc.2024.106053

  8. Wang, Niannian / Ma, Duo / Du, Xueming / Li, Bin / Di, Danyang / Pang, Gaozhao / Duan, Yihang (2024): An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes. In: Tunnelling and Underground Space Technology, v. 143 (Januar 2024).

    https://doi.org/10.1016/j.tust.2023.105480

  9. Fang, Hongyuan / Zhang, Zhaoyang / Di, Danyang / Zhang, Jinping / Sun, Bin / Wang, Niannian / Li, Bin (2023): Integrating fluid–solid coupling domain knowledge with deep learning models: An automatic and interpretable diagnostic system for the silting disease of drainage pipelines. In: Tunnelling and Underground Space Technology, v. 142 (Dezember 2023).

    https://doi.org/10.1016/j.tust.2023.105386

  10. Hu, Haobang / Fang, Hongyuan / Wang, Niannian / Ma, Duo / Dong, Jiaxiu / Li, Bin / Di, Danyang / Zheng, Hongbiao / Wu, Jiang (2023): Defects identification and location of underground space for ground penetrating radar based on deep learning. In: Tunnelling and Underground Space Technology, v. 140 (Oktober 2023).

    https://doi.org/10.1016/j.tust.2023.105278

  11. Ma, Duo / Fang, Hongyuan / Wang, Niannian / Pang, Gaozhao / Li, Bin / Dong, Jiaxiu / Jiang, Xue (2023): A low-cost 3D reconstruction and measurement system based on structure-from-motion (SFM) and multi-view stereo (MVS) for sewer pipelines. In: Tunnelling and Underground Space Technology, v. 141 (November 2023).

    https://doi.org/10.1016/j.tust.2023.105345

  12. Wang, Niannian / Dong, Jiaxiu / Fang, Hongyuan / Li, Bin / Zhai, Kejie / Ma, Duo / Shen, Yibo / Hu, Haobang (2023): 3D reconstruction and segmentation system for pavement potholes based on improved structure-from-motion (SFM) and deep learning. In: Construction and Building Materials, v. 398 (September 2023).

    https://doi.org/10.1016/j.conbuildmat.2023.132499

  13. Du, Xueming / Fang, Hongyuan / Liu, Kang / Li, Bin / Wang, Niannian / Zhang, Chao / Wang, Shanyong (2023): Experimental and practical investigation of reinforcement mechanism on permeable polymer in loose area of drainage pipeline. In: Tunnelling and Underground Space Technology, v. 140 (Oktober 2023).

    https://doi.org/10.1016/j.tust.2023.105250

  14. Du, Yuchuan / Zhong, Shan / Fang, Hongyuan / Wang, Niannian / Liu, Chenglong / Wu, Difei / Sun, Yan / Xiang, Mang (2023): Modeling automatic pavement crack object detection and pixel-level segmentation. In: Automation in Construction, v. 150 (Juni 2023).

    https://doi.org/10.1016/j.autcon.2023.104840

  15. Wang, Niannian / Fang, Hongyuan / Xue, Binghan / Wu, Rui / Fang, Rui / Hu, Qunfang / Lv, Yaozhi (2023): Automatic Damage Segmentation Framework for Buried Sewer Pipes Based on Machine Vision: Case Study of Sewer Pipes in Zhengzhou, China. In: Journal of Infrastructure Systems, v. 29, n. 1 (März 2023).

    https://doi.org/10.1061/(asce)is.1943-555x.0000729

  16. Zhai, Kejie / Fang, Hongyuan / Li, Bin / Guo, Chengchao / Yang, Kangjian / Du, Xueming / Du, Mingrui / Wang, Niannian (2023): Failure experiment on CFRP-strengthened prestressed concrete cylinder pipe with broken wires. In: Tunnelling and Underground Space Technology, v. 135 (Mai 2023).

    https://doi.org/10.1016/j.tust.2023.105032

  17. Lu, Hongfang / Jiang, Xinmeng / Xu, Zhao-Dong / Wang, Niannian / Iseley, David T. (2023): Numerical study on mechanical properties of pipeline installed via horizontal directional drilling under static and dynamic traffic loads. In: Tunnelling and Underground Space Technology, v. 136 (Juni 2023).

    https://doi.org/10.1016/j.tust.2023.105077

  18. Li, Bin / Fang, Hongyuan / Yang, Kangjian / Zhang, Xijun / Du, Xueming / Wang, Niannian / Guo, Xiaoxiang (2022): Impact of erosion voids and internal corrosion on concrete pipes under traffic loads. In: Tunnelling and Underground Space Technology, v. 130 (Dezember 2022).

    https://doi.org/10.1016/j.tust.2022.104761

  19. Ma, Duo / Fang, Hongyuan / Wang, Niannian / Zheng, Hangwei / Dong, Jiaxiu / Hu, Haobang (2022): Automatic defogging, deblurring, and real-time segmentation system for sewer pipeline defects. In: Automation in Construction, v. 144 (Dezember 2022).

    https://doi.org/10.1016/j.autcon.2022.104595

  20. Dong, Jiaxiu / Wang, Niannian / Fang, Hongyuan / Wu, Rui / Zheng, Chengzhi / Ma, Duo / Hu, Haobang (2022): Automatic damage segmentation in pavement videos by fusing similar feature extraction siamese network (SFE-SNet) and pavement damage segmentation capsule network (PDS-CapsNet). In: Automation in Construction, v. 143 (November 2022).

    https://doi.org/10.1016/j.autcon.2022.104537

  21. Lu, Hongfang / Peng, Haoyan / Xu, Zhao-Dong / Matthews, John C. / Wang, Niannian / Iseley, Tom (2022): A Feature Selection–Based Intelligent Framework for Predicting Maximum Depth of Corroded Pipeline Defects. In: Journal of Performance of Constructed Facilities (ASCE), v. 36, n. 5 (Oktober 2022).

    https://doi.org/10.1061/(asce)cf.1943-5509.0001753

  22. Dong, Jiaxiu / Wang, Niannian / Fang, Hongyuan / Hu, Qunfang / Zhang, Chao / Ma, Baosong / Ma, Duo / Hu, Haobang (2022): Innovative method for pavement multiple damages segmentation and measurement by the Road-Seg-CapsNet of feature fusion. In: Construction and Building Materials, v. 324 (März 2022).

    https://doi.org/10.1016/j.conbuildmat.2022.126719

  23. Ma, Duo / Liu, Jianhua / Fang, Hongyuan / Wang, Niannian / Zhang, Chao / Li, Zhaonan / Dong, Jiaxiu (2021): A Multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN. In: Construction and Building Materials, v. 312 (Dezember 2021).

    https://doi.org/10.1016/j.conbuildmat.2021.125385

  24. Wang, Niannian / Zhao, Xuefeng / Wang, Linan / Zou, Zheng (2019): Novel System for Rapid Investigation and Damage Detection in Cultural Heritage Conservation Based on Deep Learning. In: Journal of Infrastructure Systems, v. 25, n. 3 (September 2019).

    https://doi.org/10.1061/(asce)is.1943-555x.0000499

  25. Wang, Niannian / Zhao, Qingan / Li, Shengyuan / Zhao, Xuefeng / Zhao, Peng (2018): Damage Classification for Masonry Historic Structures Using Convolutional Neural Networks Based on Still Images. In: Computer-Aided Civil and Infrastructure Engineering, v. 33, n. 12 (November 2018).

    https://doi.org/10.1111/mice.12411

  26. Zou, Zheng / Zhao, Xuefeng / Zhao, Peng / Qi, Fei / Wang, Niannian (2019): CNN-based statistics and location estimation of missing components in routine inspection of historic buildings. In: Journal of Cultural Heritage, v. 38 (Juli 2019).

    https://doi.org/10.1016/j.culher.2019.02.002

  27. Wang, Niannian / Zhao, Xuefeng / Zou, Zheng / Zhao, Peng / Qi, Fei (2020): Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning. In: Computer-Aided Civil and Infrastructure Engineering, v. 35, n. 3 (5 Februar 2020).

    https://doi.org/10.1111/mice.12488

  28. Yang, Yong / Xue, Yicong / Wang, Niannian / Yu, Yunlong (2019): Experimental and numerical study on seismic performance of deficient interior RC joints retrofitted with prestressed high-strength steel strips. In: Engineering Structures, v. 190 (Juli 2019).

    https://doi.org/10.1016/j.engstruct.2019.03.096

  29. Wang, Niannian / Zhao, Xuefeng / Zhao, Peng / Zhang, Yang / Zou, Zheng / Ou, Jinping (2019): Automatic damage detection of historic masonry buildings based on mobile deep learning. In: Automation in Construction, v. 103 (Juli 2019).

    https://doi.org/10.1016/j.autcon.2019.03.003

  30. Zhao, Xuefeng / Zhang, Yang / Wang, Niannian (2019): Bolt loosening angle detection technology using deep learning. In: Structural Control and Health Monitoring, v. 26, n. 1 (Januar 2019).

    https://doi.org/10.1002/stc.2292

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine