0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Self-Tuning Inference Model for Settlement in Shield Tunneling: A Case Study of the Taipei Mass Rapid Transit System’s Songshan Line

Auteur(s): ORCID
ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Structural Control and Health Monitoring, , v. 2023
Page(s): 1-17
DOI: 10.1155/2023/6780235
Abstrait:

Constructing tunnels in urban spaces usually uses shield tunneling. Because of numerous uncertainties related to underground construction, appropriate monitoring systems are required to prevent disasters from happening. This study collected the settlement monitoring data for Tender CG291 of the Songshan Line of the Taipei Mass Rapid Transit (MRT) system and considered that influential factors were examined to identify the correlations between predictor variables and settlement outcomes. An inference model based on symbiotic organisms search-least squares support vector machine (SOS-LSSVM) was proposed and trained on the collected data. Moreover, because the dataset used for this study contained far less data at the alert level than at the safe level, the class of the dataset was imbalanced, which could compromise the classification accuracy. This study also employed the probability distribution data balance sampling methods to enhance the forecast accuracy. The results showed that the SOS-LSSVM exhibited the most favorable accuracy compared to four other artificial intelligence-based inference models. Therefore, the proposed model can serve as an early warning reference in tunnel design and construction work.

Ouvrages et projets

Lieux géographiques

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2023/6780235.
  • Informations
    sur cette fiche
  • Reference-ID
    10734832
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    03.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine