0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

An IGBT coupling structure with a smart service life reliability predictor using active learning

Auteur(s):

ORCID


ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 10, v. 33
Page(s): 105029
DOI: 10.1088/1361-665x/ad7659
Abstrait:

An effective approach is proposed to evaluate the service life reliability of a multi-physics coupling structure of an insulated gate bipolar transistor (IGBT) module. The node-based smoothed finite element method with stabilization terms is firstly employed to construct an electrical-thermal-mechanical (ETM) coupling structure of the IGBT module, based on which the multi-physics responses can be accurately calculated to predict the service life of the IGBT module. By using the high-quality sample data obtained through the ETM coupling model, a Monte Carlo based active learning Kriging metamodel (AK-MCS) is developed to assess the service life reliability of the IGBT module, which can greatly reduce the computational cost needed by the surrogate model construction and reliability analysis. Numerical results show that the proposed ETM coupling structure can produce high-quality sample data of the IGBT dynamics and the AK-MCS machine learning technique can accurately estimate the service life reliability of the IGBT module.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ad7659.
  • Informations
    sur cette fiche
  • Reference-ID
    10798892
  • Publié(e) le:
    23.09.2024
  • Modifié(e) le:
    23.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine