0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

An IGBT coupling structure with a smart service life reliability predictor using active learning

Autor(en):

ORCID


ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 10, v. 33
Seite(n): 105029
DOI: 10.1088/1361-665x/ad7659
Abstrakt:

An effective approach is proposed to evaluate the service life reliability of a multi-physics coupling structure of an insulated gate bipolar transistor (IGBT) module. The node-based smoothed finite element method with stabilization terms is firstly employed to construct an electrical-thermal-mechanical (ETM) coupling structure of the IGBT module, based on which the multi-physics responses can be accurately calculated to predict the service life of the IGBT module. By using the high-quality sample data obtained through the ETM coupling model, a Monte Carlo based active learning Kriging metamodel (AK-MCS) is developed to assess the service life reliability of the IGBT module, which can greatly reduce the computational cost needed by the surrogate model construction and reliability analysis. Numerical results show that the proposed ETM coupling structure can produce high-quality sample data of the IGBT dynamics and the AK-MCS machine learning technique can accurately estimate the service life reliability of the IGBT module.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/ad7659.
  • Über diese
    Datenseite
  • Reference-ID
    10798892
  • Veröffentlicht am:
    23.09.2024
  • Geändert am:
    23.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine