A Framework for Auditing Robot-Inclusivity of Indoor Environments Based on Lighting Condition
Auteur(s): |
Zimou Zeng
Matthew S. K. Yeo Charan Satya Chandra Sairam Borusu M. A. Viraj J. Muthugala Michael Budig Mohan Rajesh Elara Yixiao Wang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 27 mars 2024, n. 4, v. 14 |
Page(s): | 1110 |
DOI: | 10.3390/buildings14041110 |
Abstrait: |
Mobile service robots employ vision systems to discern objects in their workspaces for navigation or object detection. The lighting conditions of the surroundings affect a robot’s ability to discern and navigate in its work environment. Robot inclusivity principles can be used to determine the suitability of a site’s lighting condition for robot performance. This paper proposes a novel framework for autonomously auditing the Robot Inclusivity Index of indoor environments based on the lighting condition (RII-lux). The framework considers the factors of light intensity and the presence of glare to define the RII-Lux of a particular location in an environment. The auditing framework is implemented on a robot to autonomously generate a heatmap visually representing the variation in RII-Lux of an environment. The applicability of the proposed framework for generating true-to-life RII-Lux heatmaps has been validated through experimental results. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.02 MB
- Informations
sur cette fiche - Reference-ID
10773434 - Publié(e) le:
29.04.2024 - Modifié(e) le:
05.06.2024