Earthquake Influence on the Rail Irregularity on High-Speed Railway Bridge
Author(s): |
Zhipeng Lai
Xin Kang Lizhong Jiang Wangbao Zhou Yulin Feng Yuntai Zhang Jian Yu Leixin Nie |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Shock and Vibration, January 2020, v. 2020 |
Page(s): | 1-16 |
DOI: | 10.1155/2020/4315304 |
Abstract: |
Rail irregularity is the leading cause of enhancing train-track coupling vibration and, therefore, should be studied in detail for safety requirements. In this study, the differences between existing rail irregularities without being subjected to an earthquake between different countries were first studied. Results show that existing power spectrum density and time-domain displacement samples of rail irregularities in the American code are the largest, while the irregularities of the Germany railway are higher than those of China in a specific range of rail wavelengths. Afterward, the effects of earthquake intensity, soil site, and duration on the rail irregularity of a Chinese typical high-speed railway bridge were investigated. For this purpose, a finite element model was established and validated by the shaking table test of a 1/12-scaled high-speed railway bridge experimental specimen. The calculation results indicated that the influences of earthquakes on the rail alignment irregularity were evident. |
Copyright: | © 2020 Zhipeng Lai, Xin Kang, Lizhong Jiang, Wangbao Zhou, Yulin Feng, Yuntai Zhang, Jian Yu, Leixin Nie |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.18 MB
- About this
data sheet - Reference-ID
10676221 - Published on:
28/05/2022 - Last updated on:
01/06/2022