0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Surrogate Modelling of Bridge Deterioration Using Machine Learning and Defect Data

 Surrogate Modelling of Bridge Deterioration Using Machine Learning and Defect Data
Auteur(s): , , ,
Présenté pendant IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, publié dans , pp. 352-360
DOI: 10.2749/sanjose.2024.0352
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.59 MB

Bridge maintenance relies heavily on group-level bridge deterioration models. However, current models that use inspection ratings struggle with data reliability and the subjective nature of inspect...
Lire plus

Détails bibliographiques

Auteur(s): (Shanghai Qi Zhi Institute, Shanghai, China Tongji University, Shanghai, China)
(Shanghai Qi Zhi Institute, Shanghai, China Tongji University, Shanghai, China)
(Department of Civil & Environmental Engineering, University of Minho, Braga, Portugal)
(State Key Laboratory of Disaster Reduction in Civil Engineering, Shanghai, China)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Publié dans:
Page(s): 352-360 Nombre total de pages (du PDF): 9
Page(s): 352-360
Nombre total de pages (du PDF): 9
DOI: 10.2749/sanjose.2024.0352
Abstrait:

Bridge maintenance relies heavily on group-level bridge deterioration models. However, current models that use inspection ratings struggle with data reliability and the subjective nature of inspector evaluations. This study proposes a new surrogate deterioration model for groups of bridges that utilizes data from visual inspections and leverages automated machine learning. The model measures bridge component deterioration using indicators obtained from these inspections, incorporating traffic flow, structural configurations, and defect data. A two-layer surrogate model is then developed using automated machine learning techniques. Validated using data from multiple bridges in China, this surrogate model demonstrates high predictive accuracy with little need for adjustment, effectively forecasting deterioration at both the individual and group levels across different maintenance approaches.