0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Surrogate Modelling of Bridge Deterioration Using Machine Learning and Defect Data

 Surrogate Modelling of Bridge Deterioration Using Machine Learning and Defect Data
Autor(en): , , ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 352-360
DOI: 10.2749/sanjose.2024.0352
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.59 MB

Bridge maintenance relies heavily on group-level bridge deterioration models. However, current models that use inspection ratings struggle with data reliability and the subjective nature of inspect...
Weiterlesen

Bibliografische Angaben

Autor(en): (Shanghai Qi Zhi Institute, Shanghai, China Tongji University, Shanghai, China)
(Shanghai Qi Zhi Institute, Shanghai, China Tongji University, Shanghai, China)
(Department of Civil & Environmental Engineering, University of Minho, Braga, Portugal)
(State Key Laboratory of Disaster Reduction in Civil Engineering, Shanghai, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 352-360 Anzahl der Seiten (im PDF): 9
Seite(n): 352-360
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/sanjose.2024.0352
Abstrakt:

Bridge maintenance relies heavily on group-level bridge deterioration models. However, current models that use inspection ratings struggle with data reliability and the subjective nature of inspector evaluations. This study proposes a new surrogate deterioration model for groups of bridges that utilizes data from visual inspections and leverages automated machine learning. The model measures bridge component deterioration using indicators obtained from these inspections, incorporating traffic flow, structural configurations, and defect data. A two-layer surrogate model is then developed using automated machine learning techniques. Validated using data from multiple bridges in China, this surrogate model demonstrates high predictive accuracy with little need for adjustment, effectively forecasting deterioration at both the individual and group levels across different maintenance approaches.