0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Shear strength evaluation of RC bridge deck slabs according to CSCT with multi – layered shell elements and PARC-CL Crack Model

 Shear strength evaluation of RC bridge deck slabs according to CSCT with multi – layered shell elements and PARC-CL Crack Model
Auteur(s): , , ,
Présenté pendant IABSE Conference: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September 2015, publié dans , pp. 1158-1165
DOI: 10.2749/222137815818358385
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.09 MB

The shear resistance of RC slabs without shear reinforcement subjected to concentrated loads near linear support is usually calibrated on the base of tests on one – way slabs with rectangular cross...
Lire plus

Détails bibliographiques

Auteur(s): (Department of Civil Engineering, University of Parma, Parma, Italy)
(Department of Civil Engineering, University of Parma, Parma, Italy)
(Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland)
(Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Conference: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September 2015
Publié dans:
Page(s): 1158-1165 Nombre total de pages (du PDF): 8
Page(s): 1158-1165
Nombre total de pages (du PDF): 8
Année: 2015
DOI: 10.2749/222137815818358385
Abstrait:

The shear resistance of RC slabs without shear reinforcement subjected to concentrated loads near linear support is usually calibrated on the base of tests on one – way slabs with rectangular cross section. However, the actual behavior of slabs subjected to concentrated loads is described properly by a two-way slab response. The aim of this paper consists in the evaluation of the shear resistance of bridge deck slabs using analytical formulations and Nonlinear Finite Element Analyses (NLFEA). The obtained numerical results are consequently compared with experimental observations from two test campaigns. The case studies were analysed by NLFE analyses carried out using the constitutive Crack Model PARC_CL (Physical Approach for Reinforced Concrete under Cycling Loading) implemented in the user subroutine UMAT.for in Abaqus Code. In order to predict properly global and local failure modes through a NLFE model, a multi – layered shell modelling has been used. As shell element modelling is not able to detect out – of – plane shear failures, the ultimate shear resistance of these slabs is evaluated by means of a post – processing method according to the Critical Shear Crack Theory (CSCT).