0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Resilience Quantification Based on Monitoring & Prediction Data Using Artificial Intelligence (AI)

 Resilience Quantification Based on Monitoring & Prediction Data Using Artificial Intelligence (AI)
Auteur(s): ORCID, , , ,
Présenté pendant IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, publié dans , pp. 1715-1722
DOI: 10.2749/nanjing.2022.1715
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.16 MB

Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loa...
Lire plus

Détails bibliographiques

Auteur(s): ORCID (Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi Department of Civil & Environmental Engineering, University of Surrey, Guildford UK)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Publié dans:
Page(s): 1715-1722 Nombre total de pages (du PDF): 8
Page(s): 1715-1722
Nombre total de pages (du PDF): 8
DOI: 10.2749/nanjing.2022.1715
Abstrait:

Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loads. Those diagnosis and function data can be the basis for the prognosis of future prediction for the performance of the assets. Towards this direction, this paper develops a new methodology that uses real monitoring data and Artificial Intelligence (AI) algorithms to quantify the resilience based on future traffic load predictions of functionality. It includes the case study of the “Hollandse Brug” bridge in the Netherlands considering strains and traffic load predictions and other external. Resilience is derived as a function of both functional and structural parameters throughout the lifecycle. The quantification is supported by sustainability indices and key performance indicators representing the traffic flow, the structural integrity and the sustainability level of the asset.

Mots-clé:
ponts
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
License:

Cette oeuvre ne peut être utilisée sans la permission de l'auteur ou détenteur des droits.