0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Resilience Quantification Based on Monitoring & Prediction Data Using Artificial Intelligence (AI)

 Resilience Quantification Based on Monitoring & Prediction Data Using Artificial Intelligence (AI)
Autor(en): ORCID, , , ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1715-1722
DOI: 10.2749/nanjing.2022.1715
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.16 MB

Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loa...
Weiterlesen

Bibliografische Angaben

Autor(en): ORCID (Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi Department of Civil & Environmental Engineering, University of Surrey, Guildford UK)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
(Civil Engineering Department, Democritus University of Thrace University Campus, Xanthi)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1715-1722 Anzahl der Seiten (im PDF): 8
Seite(n): 1715-1722
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/nanjing.2022.1715
Abstrakt:

Lately, there is an increasing demand for resilient infrastructure assets. To support the documentation of resilience, Structural Health Monitoring (SHM) data is a necessity, as well as traffic loads. Those diagnosis and function data can be the basis for the prognosis of future prediction for the performance of the assets. Towards this direction, this paper develops a new methodology that uses real monitoring data and Artificial Intelligence (AI) algorithms to quantify the resilience based on future traffic load predictions of functionality. It includes the case study of the “Hollandse Brug” bridge in the Netherlands considering strains and traffic load predictions and other external. Resilience is derived as a function of both functional and structural parameters throughout the lifecycle. The quantification is supported by sustainability indices and key performance indicators representing the traffic flow, the structural integrity and the sustainability level of the asset.

Stichwörter:
Brücken Verkehr
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.