0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Proposal for the Extension of Simulation Models by Integrating a Virtual Sensor Concept into the Monitoring Process of Load-Bearing Glass Façades

 Proposal for the Extension of Simulation Models by Integrating a Virtual Sensor Concept into the Monitoring Process of Load-Bearing Glass Façades
Auteur(s): ,
Présenté pendant IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, publié dans , pp. 1086-1094
DOI: 10.2749/sanjose.2024.1086
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.55 MB

In civil engineering, monitoring structures is crucial for assessing potential damage. Challenges in integrating physical sensors with numerical simulations arise from the assumptions of 'perfect' ...
Lire plus

Détails bibliographiques

Auteur(s): (University of the Bundeswehr Munich, Institute for Structural Engineering, Germany)
(University of the Bundeswehr Munich, Institute for Structural Engineering, Germany)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Publié dans:
Page(s): 1086-1094 Nombre total de pages (du PDF): 9
Page(s): 1086-1094
Nombre total de pages (du PDF): 9
DOI: 10.2749/sanjose.2024.1086
Abstrait:

In civil engineering, monitoring structures is crucial for assessing potential damage. Challenges in integrating physical sensors with numerical simulations arise from the assumptions of 'perfect' conditions in simulations, which complicate damage predictions. This issue is significant in structures with unpredictable damage patterns, such as load-bearing glass façades, where the risk of sudden pane failure limits broader applications, despite the proven load capacity. The proposed solution is a 'soft sensor' or hybrid digital twin that merges physical sensor data with virtual models, and is significantly enhanced by machine learning to provide more accurate structural condition predictions. This approach enhances monitoring efficiency and accuracy, improves the reliability and safety of such structures, and promotes sustainable and efficient construction practices.