0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Proposal for the Extension of Simulation Models by Integrating a Virtual Sensor Concept into the Monitoring Process of Load-Bearing Glass Façades

 Proposal for the Extension of Simulation Models by Integrating a Virtual Sensor Concept into the Monitoring Process of Load-Bearing Glass Façades
Autor(en): ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 1086-1094
DOI: 10.2749/sanjose.2024.1086
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.55 MB

In civil engineering, monitoring structures is crucial for assessing potential damage. Challenges in integrating physical sensors with numerical simulations arise from the assumptions of 'perfect' ...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of the Bundeswehr Munich, Institute for Structural Engineering, Germany)
(University of the Bundeswehr Munich, Institute for Structural Engineering, Germany)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 1086-1094 Anzahl der Seiten (im PDF): 9
Seite(n): 1086-1094
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/sanjose.2024.1086
Abstrakt:

In civil engineering, monitoring structures is crucial for assessing potential damage. Challenges in integrating physical sensors with numerical simulations arise from the assumptions of 'perfect' conditions in simulations, which complicate damage predictions. This issue is significant in structures with unpredictable damage patterns, such as load-bearing glass façades, where the risk of sudden pane failure limits broader applications, despite the proven load capacity. The proposed solution is a 'soft sensor' or hybrid digital twin that merges physical sensor data with virtual models, and is significantly enhanced by machine learning to provide more accurate structural condition predictions. This approach enhances monitoring efficiency and accuracy, improves the reliability and safety of such structures, and promotes sustainable and efficient construction practices.

Stichwörter:
Bauwerksmonitoring