0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Probabilistic system identification of spatial distribution of structural parameter using Bayesian network

 Probabilistic system identification of spatial distribution of structural parameter using Bayesian network
Auteur(s): ,
Présenté pendant IABSE Congress: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, 21-23 September 2016, publié dans , pp. 431-438
DOI: 10.2749/stockholm.2016.0408
Prix: € 25,00 incl. TVA pour document PDF  
AJOUTER AU PANIER
Télécharger l'aperçu (fichier PDF) 0.19 MB

System identification (SI) is a systematic process to estimate structural parameters by minimizing errors between measured and simulated responses of the structure. Existing SI algorithms have been...
Lire plus

Détails bibliographiques

Auteur(s): (Seoul National University, Seoul, Republic of Korea)
(Seoul National University, Seoul, Republic of Korea)
Médium: papier de conférence
Langue(s): anglais
Conférence: IABSE Congress: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, 21-23 September 2016
Publié dans:
Page(s): 431-438 Nombre total de pages (du PDF): 8
Page(s): 431-438
Nombre total de pages (du PDF): 8
Année: 2016
DOI: 10.2749/stockholm.2016.0408
Abstrait:

System identification (SI) is a systematic process to estimate structural parameters by minimizing errors between measured and simulated responses of the structure. Existing SI algorithms have been suffering from ill-posedness, a well-known issue in inverse problems. To overcome challenges in SI, this paper investigates the potential use of Bayesian Network (BN) for the purpose of probabilistic identification of structural parameters. The relationships between the nodes in the BN graph are described by the conditional probability tables (CPT) obtained by Monte Carlo simulations of structural analysis. To depict the spatial distribution of deteriorating structural parameter in two-dimension effectively in a BN model, a bi- variate Gaussian function is employed. The performance of the proposed method is tested and demonstrated through comparison with the results by maximum likelihood estimation (MLE) using several assumed scenarios of structural deterioration.